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Preface

To the student

I wrote this book because I was frustrated by the other textbooks on this subject.
Waves and oscillations are enormously important for current research, yet other books
don’t stress these connections. The ideas and techniques that you will learn from this
book are exactly what you need to be ready for a study of quantum mechanics. Every
physics professor understands this linkage, and yet other books fail to emphasize it,
and often use notations which are different from those used in quantum mechanics.
Other books make little effort to keep you engaged. I can’t teach you by myself, nor
can your professor; you have to learn, and to do this you must be active. In this book,
I’ve provided tools so that you can assess your learning as you go; these are described
immediately after the table of contents. Use them. Read with paper and pencil handy.
As a scientist, you know that only by understanding the assumptions made and the
details of the derivations can you have your own logical sense of how it all fits together
into a self-consistent whole. Visit this book’s website. There, you will find links to
current physics, chemistry, biology, and engineering research that is related to the
topics in each chapter, as well as lots of other stuff, some purely fun and some purely
educational (but most of it both). Hopefully, there will be a second edition of this book
in the future; if you have suggestions for it, please e-mail me: wsmith@haverford.edu.

To the instructor

Please visit the website of this book. You’ll find materials in the website that will make
your life easier, including full solutions and important additional support materials
for the end-of-chapter problems, lecture notes which complement the text (including
additional conceptual questions, worked examples, applications to current research
and everyday life, animations, and figures), as well as custom-developed interactive
applets, video and audio recordings, and much more. The following sections can be
omitted without affecting comprehension of later material: 1.10, 1.12, 2.3–2.6, 3.5–3.6,
4.5, 4.7–4.8, 6.6–6.7, 8.6–8.7, 9.9, 9.11, 10.8–10.9, and Appendix A. If necessary, one
can skip all of chapter 6, except for the part of section 6.5 starting with the “Core
example” through the end of the section; however omitting the rest of chapter 6 means



 
viii Preface

that the students won’t be exposed to any matrix math or to the idea of an eigenvalue
equation. (They are exposed copiously to eigenvectors and eigenfunctions in other
chapters, but the word “eigenvalue” is used only in chapter 6.) If you have questions
or comments, please contact me: wsmith@haverford.edu.
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Learning Tools Used in This Book

Throughout this text you will find a number of special tools which are designed to help
you understand the material more quickly and deeply. Please spend a few moments to
read about them now.

Concept test

This checks your understanding of the ideas in the preceding material.

Self-test

Similar to a concept test, but more quantitative. It will require a little work with pencil
and paper.

Core example

Unlike an ordinary example, these are not simply applications of the material just
presented, but rather are an integral part of the main presentation. There are some topics
that are much easier to understand when presented in terms of a specific example, rather
than in more abstract general terms.

Your turn

In these sections, you are asked to work through an important part of the main
presentation. Be sure to complete this work before reading further.



 
x Learning Tools Used in This Book

Concept and skill inventory

At the end of each chapter, you’ll find a list of the key ideas that you should understand
after reading the chapter, and also a list of the specific skills you should be ready to
practice.
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1 Simple Harmonic Motion

All around us, sinusoidal waves astound us!
From “The Waves and Oscillations Syllabus Song,” by Walter F. Smith

1.1 Sinusoidal oscillations are everywhere

You are sitting on a chair, or a couch, or a bed, something that is more or less solid.
Therefore, every atom within it has a well-defined position. However, if you could look
very closely, you’d see that every one of those atoms right now is vibrating relative to
this assigned position. The hotter your chair the more violent the vibration, but even
if your chair were at absolute zero, every atom would still be vibrating! Of course, the
same is true for every atom in every solid object throughout the universe—right now,
each one of them is vibrating relative to its assigned or “equilibrium” position within
the solid.

The vibration of a particular one of these atoms might follow the pattern shown in
the top part of figure 1.1.1. The pattern appears complicated, but we will show in the
course of this book that it is really just a summation of simple sinusoids (as shown in
the lower part of the figure), each of which is associated with a “normal mode” of the
solid that contains the atoms. (Over the next several chapters, we’ll explore what the
term “normal mode” means.)

The complexity shown in the top part of the figure arises because the solid has
many “degrees of freedom”; every one of the atoms in the solid can move in three
dimensions, and each atom is affected by the motion of its neighbors. The approach of
physics, and it has been enormously successful in an astonishing variety of situations,
is to build up an understanding of complex systems through a thorough understanding
of simplified versions. For example, when studying trajectories, we begin with objects
falling straight down in a vacuum, and gradually build up to an understanding of three-
dimensional trajectories, including effects of air resistance and perhaps tumbling of
the object.

So, to understand the motion of the atom, we begin with systems that have only one
degree of freedom, that is, systems that can only move in one direction and moreover
don’t have neighbors that move. A good example is a tree branch. If you pull it straight
up and then let go, the resulting motion looks roughly as shown in figure 1.1.2. Again,
we see a sinusoidal motion, although in this case it is “damped,” meaning that over

1



 
2 Waves and Oscillations

Figure 1.1.1 Top: motion of an atom in a
solid. Bottom: Sine waves that, when
added together, create the waveform
shown in the top part.

time the motion decays away. Hold a pen or a pencil loosely at one end with your
thumb and forefinger, with the rest of the pencil hanging below. Push the bottom of the
pencil to one side, and then let go—the resulting motion looks similar to figure 1.1.2,
though this time the quantity being plotted is the angle of the pencil relative to
vertical.

In fact, if you take any object that is in an equilibrium position, displace it from
equilibrium, and then let go, you’ll get this same type of damped sinusoidal response,
as we will show quite easily in section 1.2. This type of oscillation is enormously
important, not only in the macroscopic motion of objects, machine parts, and so on but
also, perhaps surprisingly, in the performance of many electronic circuits, as well as in

Figure 1.1.2 Motion of a tree branch
when pulled up and then released.
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the detailed understanding of the motions of atoms and molecules, and their interaction
with light.

So, sinusoidal motion really is all around us, and something which any scientist
must understand deeply. However, there is another perhaps even more important
reason to study oscillations and waves: the mathematical tools and intuition you
will develop during this study are exactly what you need for quantum mechanics!
This is not surprising, since much of quantum mechanics deals with the study of the
“wave function” which describes the wave nature of objects such as the electron.
However, the connection of the field of waves and oscillations to that of quantum
mechanics is much deeper, as you’ll appreciate later. For now, rest assured that
you are laying a very solid foundation for your later study of quantum mechanics,
which is the most important and exciting realm of current physics research and
application.

1.2 The physics and mathematics behind simple sinusoidal motion

To start our quantitative study, we follow the approach of physics and consider
the simplest possible system: one with no damping. This means that all the forces
acting on the object are conservative and so can be associated with a potential
energy.

A body in stable equilibrium is, by definition, at a local minimum of the potential
energy versus position curve, as shown in figure 1.2.1. For convenience, we choose
x = 0 at the equilibrium position. Except in pathological cases, the potential energy
function U(x) near x = 0 can be approximated by a parabola, as shown. We write this
parabolic or “harmonic” approximation in the form U(x) ≈ 1

2 kx2 + const. for reasons
that will become apparent in the next sentence.

Figure 1.2.1 The Harmonic Approximation, valid for small vibrations around equilibrium.
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The force acting on the body can then be found using F = −dU

dx
= −kx. The

relation

F = −kx (1.2.1)

is known as “Hooke’s Law,” after its discoverer Robert Hooke (1635–1703).1 The
quantity k is called the “spring constant.” To find the position of the body as a function
of time, x(t), we will follow a three-step procedure. We’ll use the same procedure
throughout the book, for progressively more complex systems. To save space, we
simply write x remembering that this is shorthand for the function x(t).

1. Write down Newton’s second law for each of the bodies involved.
In this case, there is only one body, so we have

F = ma = m
d2x

dt2

F = −kx

⎫⎬
⎭ ⇒ m

d2x

dt2
= −kx. (1.2.2)

This is a “differential equation” or DEQ which simply means that it is an equation
that involves a derivative. (If you haven’t had a course in DEQs, don’t worry; we’ll
go through everything you need to know for this course and for a first course in
quantum mechanics.) This is called a “second order DEQ,” because it contains a second
derivative. The “solution” for this equation is a function x(t) for which the equation
holds true—in this case, a function for which, when you take two time derivatives
and multiply by m (as indicated on the left side of the equation), then you get back
the same function times −k (as indicated on the right side of the equation). This is
the solution that we are trying to find, since it tells us the position of the object at
all times. One important thing to know right away is that there is no general recipe
for finding the solution that works for all second-order DEQs. However, for many of
the most important such equations in physics, we can guess a solution based on our
intuition and then check to determine whether our guess is really right, as shown in the
following steps.

1. Some scholars feel that Robert Hooke is one of the most underappreciated figures in science. He
was the founder of microscopic biology (he coined the word “cell”), he discovered the red spot on
Jupiter and observed its rotation, he was the first to observe Brownian motion (150 years before
Brown), and discovered Uranus 108 years before the more-publicized discovery by Herschel.
Unfortunately, it seems that Hooke spread himself too thin, and never got around to publishing
many of his results. Hooke and Newton, though originally on friendly terms, later became fierce
rivals. It appears that Hooke conceptualized the inverse square law of gravity and the elliptical
motion of planets before Newton, and discussed this idea briefly with Newton. Newton (unlike
Hooke) was able to show quantitatively how the inverse square law predicts elliptical orbits,
and felt that Hooke was pushing for more recognition than he deserved in this very important
discovery. Some scholars feel that, when Newton became the president of the Royal Society (the
leading scientific organization of the time in England), he may intentionally have “buried” the
work of Hooke, but there is no hard evidence to support this.
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To save space, we write
d2x

dt2
as ẍ. (Each dot represents a time derivative,2 so that

ẋ represents
dx

dt
.) We rearrange equation (1.2.2) slightly to give

ẍ = − k

m
x. (1.2.3)

This is called the “equation of motion.”

2. Using physical intuition, guess a possible solution.
Observation of a mass bouncing on a spring suggests that its motion may be sinusoidal.
The most general possible sinusoid can be expressed as

x = A cos (ωt + ϕ) (1.2.4)

The values of the “adjustable constants” A and ϕ depend on the initial conditions, as
we will discuss later.

3. Plug the guess back into the system of DEQs to see if it is actually a solution,
and to determine whether there are any restrictions on the parameters that appear
in the guess.
In this case, the “system of DEQs” is the single equation (1.2.3). Before you look at the
next paragraph, plug the guess (1.2.4) into (1.2.3), verify that it is indeed a solution,
and find what the “parameter” ω must be in terms of k and m.

You should have found that

ω =
√

k
/

m (1.2.5)

So, we see that sinusoidal vibration, also known as “simple harmonic motion” or
SHM, is universally observed for vibrations that are small enough to use the Harmonic
Approximation shown in figure 1.2.1.

As described in section 1.3, ω equals 2π times the frequency of the motion and is
called the “angular frequency.”

1.3 Important parameters and adjustable constants of simple
harmonic motion

Figure 1.3.1 shows a graph of the SHM represented by equation (1.2.4). Any such
sinusoidal motion can be described with three quantities:

1. The amplitude A. As shown, the maximum value of x is A, and the minimum
value is −A.

2. The dot notation was invented by Isaac Newton. It is very convenient for us, because we have
to deal with time derivatives so frequently. However, it is generally felt that, because historical
English mathematicians continued to use this notation so long, they were held back relative
to their German counterparts, who used Gottfried Leibniz’s d/dt notation instead. (Leibniz’s
notation is more flexible, and we will use it where convenient.)
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Figure 1.3.1 Simple harmonic motion
of period T and amplitude A.

2. The period T . This is the time between successive maxima, or equivalently
between successive minima. The period is the time needed for one complete
cycle, so that when the time t changes by T , the argument of the cosine in
x = A cos (ωt + ϕ) must change by 2π . Therefore,

ω (t + T ) + ϕ = ωt + ϕ + 2π,

so that

T = 2π/ω (1.3.1)

(This equation is shown with a double border because we’ll be referring to it
so frequently. Equations shown this way are so very important that you will
find it helpful to begin memorizing them right away.) The frequency f is given
by 1/T , so that

ω = 2π f (1.3.2)

For this reason, ω is called the “angular frequency.” We will use it continually
for the rest of the text, so get accustomed to it now! We will encounter various
different angular frequencies later, so we give the special name ω0 to the angular
frequency of simple harmonic motion, that is,3

ω0 ≡ √
k/m (1.3.3)

(Note: the “0” subscript here does not indicate a connection to t = 0, but it is
universally used.)

3. The “initial phase” ϕ. The position at t = 0 is determined by a combination of
A and ϕ. It is easy to find the relation between these two “adjustable constants”

3. Physicists use the symbol “≡” to mean “is defined to be.”
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on one hand and the initial position x0 and the initial velocity v0 on the other.
From equation (1.2.4): x = A cos (ωt + ϕ) we obtain:

x0 = A cos ϕ and v0 = dx

dt

∣∣∣∣
t=0

= −ω0A sin ϕ

Your turn: From these, you should now show that

A =
√

x2
0 +

(
v0

ω0

)2

(1.3.4a) and ϕ = tan−1
( −v0

ω0x0

)
. (1.3.4b)

(We use the term “parameter” to refer to a quantity determined by the physical
properties of a system, such as mass, spring constant, or viscosity. Thus, ω0 is a
parameter. In contrast, we use “adjustable constant” to designate a quantity that is
determined by initial conditions. Thus, A and ϕ are adjustable constants.)

As mentioned earlier, the equation of motion (1.2.3) is a second-order DEQ,
because the highest derivative is of second order. It can be shown that the most general
solution to a second-order DEQ contains two (and no more than two) adjustable
constants.4 (We know that this must be true for our case, since we need to be able
to take into account (1) the initial position and (2) the initial velocity when writing
out a particular solution, therefore we need to be able to adjust two constants.)
So, we can be confident that equation (1.2.4): x = A cos (ωt + ϕ) is the general

solution to equation (1.2.3): ẍ = − k

m
x. An example of a nongeneral solution would

be x = A sin ω0t; you should verify that this satisfies equation (1.2.3). But this is the
same as equation (1.2.4), with the particular choice ϕ = −π/2.

Look again at equation (1.3.3): ω0 = √
k/m. There is something about it that is

absolutely astonishing. The angular frequency depends only on the spring constant and
the mass – it doesn’t depend on the amplitude! It would be very reasonable to expect
that, for a larger amplitude, it would take longer for the system to complete a cycle,
since the mass has to move through a larger distance. However, at larger amplitudes
the restoring force is larger and this provides exactly enough additional acceleration
to make the period (and so ω) constant. The fact that the frequency is independent of
amplitude is critical to many applications of oscillators, from grandfather clocks to
radios to microwave ovens to computers. Most of these do not actually have separate
masses and springs inside them, but instead have combinations of components which
are described by exactly analogous DEQs, and so exhibit exactly analogous behavior.
We’ll explore many of these in chapter 2, but we start now with the two most basic,
and most important, examples.

4. For the special case of a “linear” (meaning no terms such as x2 or xẋ), “homogeneous” (meaning
no constant term) DEQ, such as equation (1.2.3), this theorem is often phrased in the alternate
form, “The general solution of a linear, homogeneous second-order DEQ is the sum of two
independent solutions.”An example for our case would be x = A1 cos ω0t +A2 sin ω0t. However,
you can easily show (see problem 1.7) that this can be expressed in the form x = A cos

(
ω0t + ϕ

)
,

with A =
√

A2
1 + A2

2 and ϕ = tan−1
(−A2/A1

)
.
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