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Preface

This text is intended for the introductory three- or four-hour one-semester sopho-
more level differential equations course traditionally taken by students majoring
in science or engineering. The prerequisite is the standard course in elementary
calculus.

Engineering students frequently take a course on and use the Laplace transform
as an essential tool in their studies. In most differential equations texts, the Laplace
transform is presented, usually toward the end of the text, as an alternative method
for the solution of constant coefficient linear differential equations, with particular
emphasis on discontinuous or impulsive forcing functions. Because of its placement
at the end of the course, this important concept is not as fully assimilated as one
might hope for continued applications in the engineering curriculum. Thus, a goal
of the present text is to present the Laplace transform early in the text, and use it
as a tool for motivating and developing much of the remaining differential equation
concepts for which it is particularly well suited.

There are several rewards for investing in an early development of the Laplace
transform. The standard solution methods for constant coefficient linear differential
equations are immediate and simplified. We are able to provide a proof of the
existence and uniqueness theorems which are not usually given in introductory texts.
The solution method for constant coefficient linear systems is streamlined, and we
avoid having to introduce the notion of a defective or nondefective matrix or develop
generalized eigenvectors. Even the Cayley—Hamilton theorem, used in Sect. 9.6, is
a simple consequence of the Laplace transform. In short, the Laplace transform is
an effective tool with surprisingly diverse applications.

Mathematicians are well aware of the importance of transform methods to
simplify mathematical problems. For example, the Fourier transform is extremely
important and has extensive use in more advanced mathematics courses. The
wavelet transform has received much attention from both engineers and mathe-
maticians recently. It has been applied to problems in signal analysis, storage and
transmission of data, and data compression. We believe that students should be
introduced to transform methods early on in their studies and to that end, the Laplace
transform is particularly well suited for a sophomore level course in differential
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equations. It has been our experience that by introducing the Laplace transform
near the beginning of the text, students become proficient in its use and comfortable
with this important concept, while at the same time learning the standard topics in
differential equations.

Chapter 1 is a conventional introductory chapter that includes solution techniques
for the most commonly used first order differential equations, namely, separable and
linear equations, and some substitutions that reduce other equations to one of these.
There are also the Picard approximation algorithm and a description, without proof,
of an existence and uniqueness theorem for first order equations.

Chapter 2 starts immediately with the introduction of the Laplace transform as
an integral operator that turns a differential equation in # into an algebraic equation
in another variable s. A few basic calculations then allow one to start solving some
differential equations of order greater than one. The rest of this chapter develops
the necessary theory to be able to efficiently use the Laplace transform. Some
proofs, such as the injectivity of the Laplace transform, are delegated to an appendix.
Sections 2.6 and 2.7 introduce the basic function spaces that are used to describe the
solution spaces of constant coefficient linear homogeneous differential equations.

With the Laplace transform in hand, Chap. 3 efficiently develops the basic theory
for constant coefficient linear differential equations of order 2. For example, the
homogeneous equation g(D)y = 0 has the solution space &, that has already
been described in Sect. 2.6. The Laplace transform immediately gives a very easy
procedure for finding the test function when teaching the method of undetermined
coefficients. Thus, it is unnecessary to develop a rule-based procedure or the
annihilator method that is common in many texts.

Chapter 4 extends the basic theory developed in Chap.3 to higher order
equations. All of the basic concepts and procedures naturally extend. If desired, one
can simultaneously introduce the higher order equations as Chap. 3 is developed or
very briefly mention the differences following Chap. 3.

Chapter 5 introduces some of the theory for second order linear differential equa-
tions that are not constant coefficient. Reduction of order and variation of parameters
are topics that are included here, while Sect. 5.4 uses the Laplace transform to
transform certain second order nonconstant coefficient linear differential equations
into first order linear differential equations that can then be solved by the techniques
described in Chap. 1.

We have broken up the main theory of the Laplace transform into two parts
for simplicity. Thus, the material in Chap.2 only uses continuous input functions,
while in Chap.6 we return to develop the theory of the Laplace transform for
discontinuous functions, most notably, the step functions and functions with jump
discontinuities that can be expressed in terms of step functions in a natural way.
The Dirac delta function and differential equations that use the delta function are
also developed here. The Laplace transform works very well as a tool for solving
such differential equations. Sections 6.6—6.8 are a rather extensive treatment of
periodic functions, their Laplace transform theory, and constant coefficient linear
differential equations with periodic input function. These sections make for a good
supplemental project for a motivated student.
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Chapter 7 is an introduction to power series methods for linear differential
equations. As a nice application of the Frobenius method, explicit Laplace inversion
formulas involving rational functions with denominators that are powers of an
irreducible quadratic are derived.

Chapter 8 is primarily included for completeness. It is a standard introduction to
some matrix algebra that is needed for systems of linear differential equations. For
those who have already had exposure to this basic algebra, it can be safely skipped
or given as supplemental reading.

Chapter 9 is concerned with solving systems of linear differential equations.
By the use of the Laplace transform, it is possible to give an explicit formula for
the matrix exponential e4’ = £~ {(sl - A)fl} that does not involve the use of
eigenvectors or generalized eigenvectors. Moreover, we are then able to develop
an efficient method for computing e’ known as Fulmer’s method. Another thing
which is somewhat unique is that we use the matrix exponential in order to solve a
constant coefficient system y’ = Ay + f(t), y(ty) = yo by means of an integrating
factor. An immediate consequence of this is the existence and uniqueness theorem
for higher order constant coefficient linear differential equations, a fact that is not
commonly proved in texts at this level.

The text has numerous exercises, with answers to most odd-numbered exercises
in the appendix. Additionally, a student solutions manual is available with solutions
to most odd-numbered problems, and an instructors solution manual includes
solutions to most exercises.

Chapter Dependence

The following diagram illustrates interdependence among the chapters.




viii Preface
Suggested Syllabi

The following table suggests two possible syllabi for one semester courses.

3-Hour Course 4-Hour Course Further Reading

Sections 1.1-1.6 Sections 1.1-1.7

Sections 2.1-2.8 Sections 2.1-2.8

Sections 3.1-3.6 Sections 3.1-3.7

Sections 4.1-4.3 Sections 4.1-4.4 Section 4.5

Sections 5.1-5.3,5.6 Sections 5.1-5.6

Sections 6.1-6.5 Sections 6.1-6.5 Sections 6.6-6.8
Sections 7.1-7.3 Section 7.4

Sections 9.1-9.5 Sections 9.1-9.5,9.7 Section 9.6

Sections A.1, A.5

Chapter 8 is on matrix operations. It is not included in the syllabi given above
since some of this material is sometimes covered by courses that precede differential
equations. Instructors should decide what material needs to be covered for their
students. The sections in the Further Reading column are written at a more advanced
level. They may be used to challenge exceptional students.

We routinely provide a basic table of Laplace transforms, such as Tables 2.6
and 2.7, for use by students during exams.
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Chapter 1
First Order Differential Equations

1.1 An Introduction to Differential Equations

Many problems of science and engineering require the description of some
measurable quantity (position, temperature, population, concentration, electric
current, etc.) as a function of time. Frequently, the scientific laws governing such
quantities are best expressed as equations that involve the rate at which that quantity
changes over time. Such laws give rise to differential equations. Consider the
following three examples:

Example 1 (Newton’s Law of Heating and Cooling). Suppose we are interested
in the temperature of an object (e.g., a cup of hot coffee) that sits in an environment
(e.g., a room) or space (called, ambient space) that is maintained at a constant
temperature T,. Newton’s law of heating and cooling states that the rate at which
the temperature 7' (¢)of the object changes is proportional to the temperature
difference between the object and ambient space. Since rate of change of 7'(¢) is
expressed mathematically as the derivative, T’ (t),' Newton’s law of heating and
cooling is formulated as the mathematical expression

T'(t) = r(T(1) — To),

where r is the constant of proportionality. Notice that this is an equation that relates
the first derivative 7’(¢) and the function T (¢) itself. It is an example of a differential
equation. We will study this example in detail in Sect. 1.3.

Example 2 (Radioactive decay). Radioactivity results from the instability of the
nucleus of certain atoms from which various particles are emitted. The atoms then

'In this text, we will generally use the prime notation, that is, y’, y”, " (and y™ for derivatives
s 2,

of order greater than 3) to denote derivatives, but the Leibnitz notation %, %, etc. will also be

used when convenient.

W.A. Adkins and M.G. Davidson, Ordinary Differential Equations, 1
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2 1 First Order Differential Equations

decay into other isotopes or even other atoms. The law of radioactive decay states
that the rate at which the radioactive atoms disintegrate is proportional to the total
number of radioactive atoms present. If N(t) represents the number of radioactive
atoms at time ¢, then the rate of change of N(¢) is expressed as the derivative N'(z).
Thus, the law of radioactive decay is expressed as the equation

N'(t) = —AN().

As in the previous example, this is an equation that relates the first derivative N'(¢)
and the function N (¢) itself, and hence is a differential equation. We will consider it
further in Sect. 1.3.

As a third example, consider the following:

Example 3 (Newton’s Laws of Motion). Suppose s(¢) is a position function of
some body with mass m as measured from some fixed origin. We assume that as
time passes, forces are applied to the body so that it moves along some line. Its
velocity is given by the first derivative, s'(¢), and its acceleration is given by the
second derivative, s”(¢). Newton’s second law of motion states that the net force
acting on the body is the product of its mass and acceleration. Thus,

ms”(t) = Fpei(2).

Now in many circumstances, the net force acting on the body depends on time, the
object’s position, and its velocity. Thus, Fye () = F(¢, s(t), s'(¢)), and this leads to
the equation

ms"(t) = F(t,s(t),s (t)).

A precise formula for F depends on the circumstances of the given problem.
For example, the motion of a body in a spring-body-dashpot system is given by
ms” (t) + us’(t) + ks(t) = f(t), where u and k are constants related to the spring
and dashpot and f(¢) is some applied external (possibly) time-dependent force. We
will study this example in Sect. 3.6. For now though, we just note that this equation
relates the second derivative to the function, its derivative, and time. It too is an
example of a differential equation.
Each of these examples illustrates two important points:

* Scientific laws regarding physical quantities are frequently expressed and best
understood in terms of how that quantity changes.

* The mathematical model that expresses those changes gives rise to equations that
involve derivatives of the quantity, that is, differential equations.

We now give a more formal definition of the types of equations we will be studying.
An ordinary differential equation is an equation relating an unknown function
y(t), some of the derivatives of y(¢), and the variable ¢, which in many applied
problems will represent time. The domain of the unknown function is some interval
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of the real line, which we will frequently denote by the symbol I.> The order
of a differential equation is the order of the highest derivative that appears in the
differential equation. Thus, the order of the differential equations given in the above
examples is summarized in the following table:

Differential equation Order
T'@) =r(T@)—Ty) 1
N'(t) = —=AN(t) 1
ms”(t) = F(t,s(t),s'(t)) 2

Note that y(¢) is our generic name for an unknown function, but in concrete cases,
the unknown function may have a different name, such as 7'(¢), N(¢), or s(¢) in the
examples above. The standard form for an ordinary differential equation is obtained
by solving for the highest order derivative as a function of the unknown function
y = y(t), its lower order derivatives, and the independent variable ¢. Thus, a first
order ordinary differential equation is expressed in standard form as

Y1) = F(t, y(@)), e9)
a second order ordinary differential equation in standard form is written
Y1) = F@. y@). y'@)), 2)
and an nth order differential equation is expressed in standard form as
YO = F(t. y(@). ... ") (3)

The standard form is simply a convenient way to be able to talk about various
hypotheses to put on an equation to insure a particular conclusion, such as existence
and uniqueness of solutions (discussed in Sect. 1.7) and to classify various types
of equations (as we do in this chapter, for example) so that you will know which
algorithm to apply to arrive at a solution. In the examples given above, the equations

T'(t) = r(T(t) - To),
N'(t) = =AN()

are in standard form while the equation in Example 3 is not. However, simply
dividing by m gives

1
s"(t) = —F(@. s, s'(1)),

a second order differential equation in standard form.

2Recall that the standard notations from calculus used to describe an interval I are (a, b), [a, b),
(a, b], and [a, b] where a < b are real numbers. There are also the infinite length intervals
(—00, a) and (a, 0o) where a is a real number or =00.
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In differential equations involving the unknown function y(¢), the variable ¢ is
frequently referred to as the independent variable, while y is referred to as the
dependent variable, indicating that y has a functional dependence on ¢. In writing
ordinary differential equations, it is conventional to suppress the implicit functional
evaluations y(t), y'(t), etc. and write y, y’, etc. Thus the differential equations in
our examples above would be written

T' =1 (T ~To).
N’ = —AN,

1
and s" = —F(t, s, s'),
m

where the dependent variables are respectively, 7', N, and s.

Sometimes we must deal with functions u = u(ty, t2, ..., t,) of two or more
variables. In this case, a partial differential equation is an equation relating u,
some of the partial derivatives of u# with respect to the variables 7, ..., t,, and
possibly the variables themselves. While there may be a time or two where we
need to consider a partial differential equation, the focus of this text is on the
study of ordinary differential equations. Thus, when we use the term differential
equation without a qualifying adjective, you should assume that we mean ordinary
differential equation.

Example 4. Consider the following differential equations. Determine their order,
whether ordinary or partial, and the standard form where appropriate:

Ly =2y 2.y —y =t

3. y//+siny:0 4. y(4)_y//:y
92 02

5.ay" + by +cy = Acoswt (a #0) 6. 24 L 2"
ax2  9y?

» Solution. Equations (1)-(5) are ordinary differential equations while (6) is a
partial differential equation. Equations (1) and (2) are first order, (3) and (5) are
second order, and (4) is fourth order. Equation (1) is in standard form. The standard
forms for (2)—(5) are as follows:

2.y =y +t 3.y =—siny
b A
4.y(4)=y//+y 5_y’/=——y’—£y+—cosa)t <
a a a
Solutions

In contrast to algebraic equations, where the given and unknown objects are
numbers, differential equations belong to the much wider class of functional
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equations in which the given and unknown objects are functions (scalar functions or
vector functions) defined on some interval. A solution of an ordinary differential
equation is a function y(¢) defined on some specific interval / C R such that
substituting y(¢) for y and substituting y’(z) for y’, y”(t) for y”, etc. in the
equation gives a functional identity. That is, an identity which is satisfied for all
t € 1. For example, if a first order differential equation is given in standard form as
y' = F(t, y), then a function y(¢) defined on an interval [ is a solution if

y'(t) = F(t, y(t)) forallt € 1.

More generally, y(¢), defined on an interval /, is a solution of an nth order
differential equation expressed in standard form by y™ = F(¢, y, y', ..., y®™D)
provided

y" () = F(t, y(t), ..., y" V() forallt el.

It should be noted that it is not necessary to express the given differential equation
in standard form in order to check that a function is a solution. Simply substitute
y(t) and the derivatives of y(¢) into the differential equation as it is given. The
general solution of a differential equation is the set of all solutions. As the following
examples will show, writing down the general solution to a differential equation can
range from easy to difficult.

Example 5. Consider the differential equation

y=y-t (4)

Determine which of the following functions defined on the interval (—oo, 00) are
solutions:

L. yi¢)=t+1

2. y(t) =¢€'

3. y3(t) =t + 1 —7¢

4. y4(t) =t + 1 + ce’ where c is an arbitrary scalar.

» Solution. In each case, we calculate the derivative and substitute the results in
(4). The following table summarizes the needed calculations:

Function ¥y (1) y(t)—1t
N =t+1 yi@) =1 ne)—t=t+1—-t=1
n(t) =¢ »t) =¢ n)—t=e—t

) =t+1=7¢ yi(t)=1=7¢" y(t)—t=t+1-T7e" —t=1-7¢
@) =t+1+ce yi)=14ce ys@t)—t=t+1+4ce' —t=14ce

For y;(¢) to be a solution of (4), the second and third entries in the row for y; (¢)
must be the same. Thus, y;(¢), y3(¢), and y,(¢) are solutions while y,(¢) is not a
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Fig. 1.1 The solutions
ye(t) =1+ 1+ ce of
y’ =y —t for various ¢

solution. Notice that y;(¢) = y4(t) when ¢ = 0 and y3(¢) = y4(¢t) when ¢ = —7.
Thus, y4(¢) actually already contains y;(¢) and y3(¢) by appropriate choices of the
constant ¢ € R, the real numbers. R |

The differential equation given by (4) is an example of a first order linear
differential equation. The theory of such equations will be discussed in Sect. 1.4,
where we will show that all solutions to (4) are included in the function

ya(t) =t + 14 ce, t € (00, 00)

of the above example by appropriate choice of the constant ¢. We call this the
general solution of (4) and denote it by y,(¢). Figure 1.1 is the graph of y,(¢) for
various choices of the constant c.

Observe that the general solution is parameterized by the constant ¢, so that there
is a solution for each value of ¢ and hence there are infinitely many solutions of
(4). This is characteristic of many differential equations. Moreover, the domain is
the same for each of the solutions, namely, the entire real line. With the following
example, there is a completely different behavior with regard to the domain of the
solutions. Specifically, the domain of each solution varies with the parameter ¢ and
is not the same interval for all solutions.

Example 6. Consider the differential equation
y = =2t(1 + y)* )
Show that the following functions are solutions:

Loyi() =-1
2. y2(t) = =1 + (t> — ¢)~!, for any constant ¢
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Fig. 1.2 The solutions y,(1) = —1 + (¢> —¢)™' of y/ = —2¢(1 + y)? for various ¢

» Solution. Let y;(r) = —1. Then y| () = 0 and —27(1 + y;(¢))*> = —21(0) = 0,
which is valid for all ¢ € (—o0o, 00). Hence, y;(t) = —1 is a solution.
Now let y»(t) = —1 + (2> — ¢)~!. Straightforward calculations give

yh(t) = =2t(t> — )%, and
2t(1+ y(1))? = 2t(1 + (=1 + (> =) V)2 = =21(* — ) 2.

Thus, y5(1) = —2t(1 4 y2(1))* so that y,(¢) is a solution for any choice of the
constant c. <

Equation (5) is an example of a separable differential equation. The theory of
separable equations will be discussed in Sect.1.3. It turns out that there are no
solutions to (5) other than y;(¢) and y,(¢), so that these two sets of functions
constitute the general solution y,(f). Notice that the intervals on which y,(¢) is
defined depend on the constant c. For example, if ¢ < 0, then y,(¢) = —1 + (1> —
¢)~! is defined for all € (—o0o, 00). If ¢ = 0, then y,(¢) = —1 + ¢~ 2 is defined on
two intervals: ¢ € (—o0,0) or ¢t € (0, 00). Finally, if ¢ > 0, then y,(¢) is defined on
three intervals: (—o0, —+/c), (—+/c, /¢), or (4/c, 00). Figure 1.2 gives the graph
of y,(t) for various choices of the constant c.

Note that the interval on which the solution y(¢) is defined is not at all apparent
from looking at the differential equation (5).

Example 7. Consider the differential equation
y" 4+ 16y = 0. (©6)
Show that the following functions are solutions on the entire real line:

1. y1(t) = cos4t
2. yo(t) = sin4t
3. y3(t) = c; cos4t + ¢, sin4¢, where ¢y and ¢, are constants.

Show that the following functions are not solutions:

4. y4(t) = ¥
5. y5(t) = sint.



8 1 First Order Differential Equations

» Solution. In standard form, (6) can be written as y” = —16y, so for y(¢) to be
a solution of this equation means that y” (1) = —16y(¢) for all real numbers ¢. The
following calculations then verify the claims for the functions y; (¢), (1 <i < 5):
Loy/@t) = d—2(cos4t) = i(—4 sin4t) = —16cos4t = —16y(¢)
dr? dt
2,90 = d—2(sin 4r) = i(4 cos4t) = —16sindt = —16y,(¢)
dr? dt

d? . d .
3.05@) = ﬁ(cl cos4t + ¢y sindt) = E(—4cl sindt + 4¢, cos4t)

= —16¢| cos4t — 16¢,sindt = —16y5(¢)

e o, d 4 4
4. yl(@) = ﬁ(e N = E(4e 1) = 16e* #£ —16y,4(1)
5 ”(Z)—d—z(sint)—i(cost)——sint;é—m (1) <
ERER P At - Vs

It is true, but not obvious, that letting ¢, and ¢, vary over all real numbers in y3(t) =
¢y cos4t + ¢; sin4t produces all solutions to y” + 16y = 0, so that y3(¢) is the
general solution of (6) . This differential equation is an example of a second order
constant coefficient linear differential equation. These equations will be studied in
Chap. 3.

The Arbitrary Constants

In Examples 5 and 6, we saw that the solution set of the given first order equation
was parameterized by an arbitrary constant ¢ (although (5) also had an extra solution
y1(t) = —1), and in Example 7, the solution set of the second order equation
was parameterized by two constants ¢ and c,. To understand why these results are
not surprising, consider what is arguably the simplest of all first order differential
equations:

y' = f(1),

where f(¢) is some continuous function on some interval /. Integration of both
sides produces a solution

Vi) = / Fdt +c. ™

where ¢ is a constant of integration and [ f(¢) d7 is any fixed antiderivative of /().
The fundamental theorem of calculus implies that all antiderivatives are of this form
so (7) is the general solution of y’ = f(¢). Generally speaking, solving any first
order differential equation will implicitly involve integration. A similar calculation
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