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To the reader

1. The Elements of Mathematics Series takes up mathematics at the beginning, and
gives complete proofs. In principle, it requires no particular knowledge of mathemat-
ics on the readers’ part, but only a certain familiarity with mathematical reasoning
and a certain capacity for abstract thought. Nevertheless it is directed especially to
those who have a good knowledge of at least the content of the first year or two of a
university mathematics course.

2. Themethod of exposition we have chosen is axiomatic, and normally proceeds
from the general to the particular. The demands of proof impose a rigorously fixed
order on the subject matter. It follows that the utility of certain considerations may
not be immediately apparent to the reader until later chapters unless he has already
a fairly extended knowledge of mathematics.

3. The series is divided into Books and each Book into chapters. The Books
already published, either in whole or in part, in the French edition, are listed be-
low. When an English translation is available, the corresponding English title is
mentioned between parentheses. Throughout the volume a reference indicates the
English edition, when available, and the French edition otherwise.

Théorie des Ensembles (Theory of Sets) designated by E (Set Theory)
Algèbre (Algebra) 1 — A (Alg)
Topologie Générale (General Topology) — TG (Gen. Top.)
Fonctions d’une Variable Réelle
(Functions of a Real Variable) 2 — FVR (FRV)
Espaces Vectoriels Topologiques
(Topological Vector Spaces) — EVT (Top. Vect. Sp.)
Intégration — INT
Algèbre Commutative (Commutative Algebra) 3 — AC (Comm. Alg.)
Variétes Différentielles et Analytiques — VAR
Groupes et Algèbres de Lie
(Lie Groups and Lie Algebras) 4 — LIE (LIE)
Théories Spectrales TS

In the first six Books (according to the above order), every statement in the
text assumes as known only those results which have already discussed in the same

1 So far, chapters I to VII only have been translated.
2 This volume!
3 So far, chapters I to VII only have been translated.
4 So far, chapters I to III only have been translated.



 

VI TO THE READER

chapter, or in the previous chapters ordered as follows: E ; A, chapters I to III ; TG,
chapters I to III ; A, from chapter IV on ; TG, from chapter IV on ; FVR ; EVT ; INT.

From the seventh Book on, the reader will usually find a precise indication of its
logical relationship to the other Books (the first six Books being always assumed to
be known).

4. However, we have sometimes inserted examples in the text which refer to facts
which the reader may already know but which have not yet been discussed in the
Series. Such examples are placed between two asterisks : ∗. . . ∗. Most readers will
undoubtedly find that these examples will help them to understand the text. In other
cases, the passages between ∗. . . ∗ refer to results which are discussed elsewhere in
the Series. We hope the reader will be able to verify the absence of any vicious circle.

5. The logical framework of each chapter consists of the definitions, the axioms,
and the theorems of the chapter. These are the parts that have mainly to be borne
in mind for subsequent use. Less important results and those which can easily be
deduced from the theorems are labelled as “propositions”, “lemmas”, “corollaries”,
“remarks”, etc. Those which may be omitted at a first reading are printed in small
type. A commentary on a particularly important theorem appears occasionally under
the name of “scholium”.

To avoid tedious repetitions it is sometimes convenient to introduce notation or
abbreviations which are in force only within a certain chapter or a certain section
of a chapter (for example, in a chapter which is concerned only with commutative
rings, the word “ring” would always signify “commutative ring”). Such conventions
are always explicitly mentioned, generally at the beginning of the chapter in which
they occur.

6. Some passages are designed to forewarn the reader against serious errors.
These passages are signposted in the margin with the sign (“dangerous bend”).

7. The Exercises are designed both to enable the reader to satisfy himself that he
has digested the text and to bring to his notice results which have no place in the text
but which are nonetheless of interest. The most difficult exercises bear the sign ¶.

8. In general we have adhered to the commonly accepted terminology, except
where there appeared to be good reasons for deviating from it.

9. We have made a particular effort always to use rigorously correct language,
without sacrificing simplicity. As far as possible we have drawn attention in the text
to abuses of language,without which anymathematical text runs the risk of pedantry,
not to say unreadability.

10. Since in principle the text consists of a dogmatic exposition of a theory,
it contains in general no references to the literature. Bibliographical are gathered
together in Historical Notes. The bibliography which follows each historical note
contains in general only those books and original memoirs which have been of the
greatest importance in the evolution of the theory under discussion. It makes no sort
of pretence to completeness.

As to the exercises, we have not thought it worthwhile in general to indicate their
origins, since they have been taken from many different sources (original papers,
textbooks, collections of exercises).



 

TO THE READER VII

11. In the present Book, references to theorems, axioms, definitions, . . . are given
by quoting successively:

– the Book (using the abbreviation listed in Section 3), chapter and page, where
they can be found ;

– the chapter and page only when referring to the present Book.
The Summaries of Results are quoted by to the letterR; thusSet Theory,Rsignifies

“Summary of Results of the Theory of Sets”.



 

CONTENTS

TO THE READER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

CHAPTER I DERIVATIVES

§ 1. FIRST DERIVATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Derivative of a vector function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Linearity of differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Derivative of a product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Derivative of the inverse of a function . . . . . . . . . . . . . . . . . . . . . . . 8
5. Derivative of a composite function . . . . . . . . . . . . . . . . . . . . . . . . . 9
6. Derivative of an inverse function . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7. Derivatives of real-valued functions . . . . . . . . . . . . . . . . . . . . . . . . 10

§ 2. THE MEAN VALUE THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1. Rolle’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2. The mean value theorem for real-valued functions . . . . . . . . . . . . . 13
3. The mean value theorem for vector functions . . . . . . . . . . . . . . . . . 15
4. Continuity of derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

§ 3. DERIVATIVES OF HIGHER ORDER . . . . . . . . . . . . . . . . . . . . . . . . 20

1. Derivatives of order n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2. Taylor’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

§ 4. CONVEX FUNCTIONS OF A REAL VARIABLE . . . . . . . . . . . . . . 23

1. Definition of a convex function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Families of convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3. Continuity and differentiability of convex functions . . . . . . . . . . . . 27
4. Criteria for convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Exercises on §2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



 

X CONTENTS

Exercises on §3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Exercises on §4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER II PRIMITIVES AND INTEGRALS

§ 1. PRIMITIVES AND INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1. Definition of primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2. Existence of primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3. Regulated functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4. Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5. Properties of integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6. Integral formula for the remainder in Taylor’s formula;

primitives of higher order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

§ 2. INTEGRALS OVER NON-COMPACT INTERVALS . . . . . . . . . . . 62

1. Definition of an integral over a non-compact interval . . . . . . . . . . . 62
2. Integrals of positive functions over a non-compact interval . . . . . . 66
3. Absolutely convergent integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

§ 3. DERIVATIVES AND INTEGRALS
OF FUNCTIONS DEPENDING ON A PARAMETER . . . . . . . . . . . 68

1. Integral of a limit of functions on a compact interval . . . . . . . . . . . 68
2. Integral of a limit of functions on a non-compact interval . . . . . . . 69
3. Normally convergent integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4. Derivative with respect to a parameter of an integral

over a compact interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5. Derivative with respect to a parameter of an integral

over a non-compact interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6. Change of order of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Exercises on §2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Exercises on §3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CHAPTER III ELEMENTARY FUNCTIONS

§ 1. DERIVATIVES OF THE EXPONENTIAL
AND CIRCULAR FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

1. Derivatives of the exponential functions; the number e . . . . . . . . . . 91
2. Derivative of loga x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3. Derivatives of the circular functions; the number π . . . . . . . . . . . . 94
4. Inverse circular functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



 

CONTENTS XI

5. The complex exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6. Properties of the function ez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7. The complex logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8. Primitives of rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9. Complex circular functions; hyperbolic functions . . . . . . . . . . . . . . 102

§ 2. EXPANSIONS OF THE EXPONENTIAL
AND CIRCULAR FUNCTIONS,
AND OF THE FUNCTIONS ASSOCIATEDWITH THEM . . . . . . 105

1. Expansion of the real exponential . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2. Expansions of the complex exponential, of cos x and sin x . . . . . . . 106
3. The binomial expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4. Expansions of log(1+ x), of Arc tan x and of Arc sin x . . . . . . . . . 111

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Exercises on §2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Historical Note (Chapters I-II-III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

CHAPTER IV DIFFERENTIAL EQUATIONS

§ 1. EXISTENCE THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

1. The concept of a differential equation . . . . . . . . . . . . . . . . . . . . . . . 163
2. Differential equations admitting solutions that are primitives

of regulated functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3. Existence of approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . 166
4. Comparison of approximate solutions . . . . . . . . . . . . . . . . . . . . . . . 168
5. Existence and uniqueness of solutions

of Lipschitz and locally Lipschitz equations . . . . . . . . . . . . . . . . . . 171
6. Continuity of integrals as functions of a parameter . . . . . . . . . . . . . 174
7. Dependence on initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

§ 2. LINEAR DIFFERENTIAL EQUATIONS . . . . . . . . . . . . . . . . . . . . . 177

1. Existence of integrals of a linear differential equation . . . . . . . . . . 177
2. Linearity of the integrals of a linear differential equation . . . . . . . . 179
3. Integrating the inhomogeneous linear equation . . . . . . . . . . . . . . . . 182
4. Fundamental systems of integrals of a linear system

of scalar differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5. Adjoint equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6. Linear differential equations with constant coefficients . . . . . . . . . 188
7. Linear equations of order n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8 Linear equations of order n with constant coefficients . . . . . . . . . . 194
9 Systems of linear equations with constant coefficients . . . . . . . . . . 196



 

XII CONTENTS

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Exercises on §2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

CHAPTER V LOCAL STUDY OF FUNCTIONS

§ 1. COMPARISON OF FUNCTIONS ON A FILTERED SET . . . . . . . 211

1. Comparison relations: I. Weak relations . . . . . . . . . . . . . . . . . . . . . 211
2. Comparison relations: II. Strong relations . . . . . . . . . . . . . . . . . . . . 214
3. Change of variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4. Comparison relations between strictly positive functions . . . . . . . . 217
5. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

§ 2. ASYMPTOTIC EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

1. Scales of comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
2. Principal parts and asymptotic expansions . . . . . . . . . . . . . . . . . . . 221
3. Sums and products of asymptotic expansions . . . . . . . . . . . . . . . . . 223
4. Composition of asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . 224
5. Asymptotic expansions with variable coefficients . . . . . . . . . . . . . . 226

§ 3. ASYMPTOTIC EXPANSIONS OF FUNCTIONS
OF A REAL VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

1. Integration of comparison relations: I. Weak relations . . . . . . . . . . 228
2. Application: logarithmic criteria for convergence of integrals . . . . 229
3. Integration of comparison relations: II. Strong relations . . . . . . . . . 230
4. Differentiation of comparison relations . . . . . . . . . . . . . . . . . . . . . . 232
5. Principal part of a primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6. Asymptotic expansion of a primitive . . . . . . . . . . . . . . . . . . . . . . . . 235

§ 4. APPLICATION TO SERIES WITH POSITIVE TERMS . . . . . . . . 236

1. Convergence criteria for series with positive terms . . . . . . . . . . . . . 236
2. Asymptotic expansion of the partial sums of a series . . . . . . . . . . . 238
3. Asymptotic expansion of the partial products

of an infinite product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4. Application: convergence criteria of the second kind for series

with positive terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

1. Hardy fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2. Extension of a Hardy field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
3. Comparison of functions in a Hardy field . . . . . . . . . . . . . . . . . . . . 250



 

CONTENTS XIII

4. (H) Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
5. Exponentials and iterated logarithms . . . . . . . . . . . . . . . . . . . . . . . . 253
6. Inverse function of an (H) function . . . . . . . . . . . . . . . . . . . . . . . . . 255

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Exercises on §3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Exercises on §4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Exercises on Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

CHAPTER VI GENERALIZED TAYLOR EXPANSIONS.
EULER-MACLAURIN SUMMATION FORMULA

§1. GENERALIZED TAYLOR EXPANSIONS . . . . . . . . . . . . . . . . . . . . 269

1. Composition operators on an algebra of polynomials . . . . . . . . . . . 269
2. Appell polynomials attached to a composition operator . . . . . . . . . 272
3. Generating series for the Appell polynomials . . . . . . . . . . . . . . . . . 274
4. Bernoulli polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
5. Composition operators on functions of a real variable . . . . . . . . . . 277
6. Indicatrix of a composition operator . . . . . . . . . . . . . . . . . . . . . . . . 278
7. The Euler-Maclaurin summation formula . . . . . . . . . . . . . . . . . . . . 282

§ 2. EULERIAN EXPANSIONS
OF THE TRIGONOMETRIC FUNCTIONS
AND BERNOULLI NUMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

1. Eulerian expansion of cot z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
2. Eulerian expansion of sin z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
3. Application to the Bernoulli numbers . . . . . . . . . . . . . . . . . . . . . . . 287

§ 3. BOUNDS FOR THE REMAINDER
IN THE EULER-MACLAURIN SUMMATION FORMULA . . . . . 288

1. Bounds for the remainder
in the Euler-Maclaurin summation formula . . . . . . . . . . . . . . . . . . . 288

2. Application to asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . . 289

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Exercises on §2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Exercises on §3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Historical Note (Chapters V and VI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303



 

XIV CONTENTS

CHAPTER VII THE GAMMA FUNCTION

§ 1. THE GAMMA FUNCTION IN THE REAL DOMAIN . . . . . . . . . . 305

1. Definition of the Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . 305
2. Properties of the Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . 307
3. The Euler integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

§ 2. THE GAMMA FUNCTION IN THE COMPLEX DOMAIN . . . . . . 315

1. Extending the Gamma function to C . . . . . . . . . . . . . . . . . . . . . . . . 315
2. The complements’ relation and the Legendre-Gauss

multiplication formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
3. Stirling’s expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Exercises on §1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Exercises on §2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

INDEX OF NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335



 

INTRODUCTION

The purpose of this Book is the elementary study of the infinitesimal properties ofone
real variable; the extension of these properties to functions of several real variables,
or, all the more, to functions defined on more general spaces, will be treated only in
later Books.

The results which we shall demonstrate will be useful above all in relation to
(finite) real-valued functions of a real variable; but most of them extend without
further argument to functions of a real variable taking values in a topological vector
space over R (see below); as these functions occur frequently in Analysis we shall
state for them all results which are not specific to real-valued functions.

The notion of a topological vector space, of which we have just spoken, is defined
and studied in detail in Book V of this Series; but we do not need any of the results of
Book V in this Book; some definitions, however, are needed, and we shall reproduce
them below for the convenience of the reader.

We shall not repeat the definition of a vector space over a (commutative) field
K (Alg., II, p. 193). 1 A topological vector space E over a topological field K is a
vector space over K endowed with a topology such that the functions x + y and xt
are continuous on E × E and E × K respectively; in particular, such a topology is
compatible with the structure of the additive group of E.All topological vector spaces
considered in this Book are implicitly assumed to beHausdorff.When the topological
group E is complete one says that the topological vector space E is complete. Every
normed vector space over a valued field K (Gen. Top., IX, p. 169) 2 is a topological
vector space over K.

Let E be a vector space (with or without a topology) over the real field R; if x, y
are arbitrary points in E the set of points xt+y(1− t) where t runs through the closed

1 The elements (or vectors) of a vector space E over a commutative field K will usually be
denoted in this chapter by thick minuscules, and scalars by roman minuscules; most often
we shall place the scalar t to the right in the product of a vector x by t, writing the product
as xt ; on occasion we will allow ourselves to use the left notation tx in certain cases where
it is more convenient; also, sometimes we shall write the product of the scalar 1/t (t �� 0)
and the vector x in the form x/t.

2 We recall that a norm on E is a real function ‖x‖ defined on E, taking finite non-negative
values, such that the relation ‖x‖ � 0 is equivalent to x � 0 and such that

‖x+ y‖ � ‖x‖ + ‖y‖ and ‖xt‖ � ‖x‖ . |t |
for all t ∈ K (|t | being the absolute value of t in K).
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segment [[[0, 1]]] ofR is called the closed segment with endpoints x, y.One says that a
subset A of E is convex if for any x, y in A the closed segment with endpoints x and
y is contained in A. For example, an affine linear variety is convex; so is any closed
segment; inRn any parallelotope (Gen. Top., VI, p. 34) is convex. Every intersection
of convex sets is convex.

We say that a topological vector space E over the field R is locally convex if the
origin (and thus any point of E) has a fundamental system of convex neighbourhoods.
Every normed space is locally convex; indeed, the balls ‖x‖ � r (r > 0) form a
fundamental system of neighbourhoods of 0 in E, and each of these is convex, for
the relations ‖x‖ � r, ‖y‖ � r imply that

‖xt + y(1− t)‖ � ‖x‖ t + ‖y‖ (1− t) � r

for 0 � t � 1.

Finally, a topological algebra A over a (commutative) topological field K is an
algebra over K endowed with a topology for which the functions x+y, xy and xt are
continuous on A×A, A×A and A×K respectively; when one endows A only with
its topology and vector space structure over K then A is a topological vector space.
Every normed algebra over a valued field K (Gen. Top., IX, p. 175) is a topological
algebra over K.



 

CHAPTER I
Derivatives

§ 1. FIRST DERIVATIVE

As was said in the Introduction, in this chapter and the next we shall study the
infinitesimal properties of functions which are defined on a subset of the real fieldR
and take their values in a Hausdorff topological vector space E over the field R; for
brevity we shall say that such a function is a vector function of a real variable. The
most important case is that where E � R (real-valued functions of a real variable).
When E � Rn, consideration of a vector function with values in E reduces to the
simultaneous consideration of n finite real functions.

Many of the definitions and properties stated in chapter I extend to functions which
are defined on a subset of the field C of complex numbers and take their values in a
topological vector space over C (vector functions of a complex variable). Some of these
definitions and properties extend even to functions which are defined on a subset of an
arbitrary commutative topological field K and take their values in a topological vector
space over K.

We shall indicate these generalizations in passing (see in particular I, p. 10, Remark 2),
emphasising above all the case of functions of a complex variable, which are by far the
most important, together with functions of a real variable, and will be studied in greater
depth in a later Book.

1. DERIVATIVE OF A VECTOR FUNCTION

DEFINITION 1. Let f be a vector function defined on an interval I ⊂ R which
does not reduce to a single point. We say that f is differentiable at a point x0 ∈ I if

lim
x→x0,x∈I,x ��x0

f(x)− f(x0)
x − x0

exists (in the vector space where f takes its values); the

value of this limit is called the first derivative (or simply the derivative) of f at the
point x0, and it is denoted by f ′(x0) or Df(x0).

If f is differentiable at the point x0, so is the restriction of f to any interval J ⊂ I
which does not reduce to a single point and such that x0 ∈ J; and the derivative of
this restriction is equal to f ′(x0). Conversely, let J be an interval contained in I and
containing a neighbourhood of x0 relative to I; if the restriction of f to J admits a
derivative at the point x0, then so does f.
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We summarise these properties by saying that the concept of derivative is a local
concept.

Remarks. ∗1) In Kinematics, if the point f(t) is the position of a moving point in the

space R3 at time t, then
f(t)− f(t0)
t − t0

is termed the average velocity between the instants

t0 and t, and its limit f ′(t0) is the instantaneous velocity (or simply velocity) at the time
t0 (when this limit exists).∗

2) If a function f, defined on I, is differentiable at a point x0 ∈ I, it is necessarily
continuous relative to I at this point.

DEFINITION 2. Let f be a vector function defined on an interval I ⊂ R, and let
x0 be a point of I such that the interval I ∩ [[[x0,+∞[[[ (resp. I ∩ ]]]−∞, x0]]]) does
not reduce to a single point. We say that f is differentiable on the right (resp. on
the left) at the point x0 if the restriction of f to the interval I ∩ [[[x0,+∞[[[ (resp.
I ∩ ]]] −∞, x0]]]) is differentiable at the point x0; the value of the derivative of this
restriction at the point x0 is called the right (resp. left) derivative of f at the point
x0 and is denoted by f ′d (x0) (resp. f

′
g(x0)).

Let f be a vector function defined on I, and x0 an interior point of I such that f is
continuous at this point; it follows from defs. 1 and 2 that for f to be differentiable at
x0 it is necessary and sufficient that f admit both a right and a left derivative at this
point, and that these derivatives be equal; and then

f ′(x0) � f ′d (x0) � f ′g(x0).

Examples. 1) A constant function has zero derivative at every point.
2) An affine linear function x �→ ax + b has derivative equal to a at every point.
3) The real function 1/x (defined for x �� 0) is differentiable at each point x0 �� 0,

for we have

(
1

x
− 1

x0

)/
(x − x0) � − 1

xx0
, and, since 1/x is continuous at x0, the limit

of the preceding expression is −1/x20 .
4) The scalar function |x | , defined on R, has right derivative +1 and left derivative

−1 at x � 0; it is not differentiable at this point.
∗5) The real function equal to 0 for x � 0, and to x sin 1/x for x �� 0, is defined and

continuous on R, but has neither right nor left derivative at the point x �� 0.∗ One can give
examples of functions which are continuous on an interval and fail to have a derivative at
every point of the interval (I, p. 35, exerc. 2 and 3).

DEFINITION 3. We say that a vector function f defined on an interval I ⊂ R is
differentiable (resp. right differentiable, left differentiable) on I if it is differentiable
(resp. right differentiable, left differentiable) at each point of I; the function x �→
f ′(x) (resp. x �→ f ′d (x) , x �→ f ′g(x)) defined on I, is called the derived function,
or (by abuse of language) the derivative (resp. right derivative, left derivative) of f,
and is denoted by f ′ or Df or df/dx (resp. f ′d , f ′g).

Remark. A function may be differentiable on an interval without its derivative being
continuous at every point of the interval (cf. I, p. 36, exerc. 5); ∗this is shown by the
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example of the function equal to 0 for x � 0 and to x2 sin 1/x for x �� 0; it has a derivative
everywhere, but this derivative is discontinuous at the point x � 0.∗

2. LINEARITY OF DIFFERENTIATION

PROPOSITION 1. The set of vector functions defined on an interval I ⊂ R, taking
values in a given topological vector space E, and differentiable at the point x0, is
a vector space over R, and the map f �→ Df(x0) is a linear mapping of this space
into E.

In other words, if f and g are defined on I and differentiable at the point x0,
then f+ g and fa (a an arbitrary scalar) are differentiable at x0 and their derivatives
there are f ′(x0)+ g′(x0) and f ′(x0)a respectively. This follows immediately from the
continuity of x+ y and of xa on E× E and E respectively.

COROLLARY. The set of vector functions defined on an interval I, taking values in
a given topological vector space E, and differentiable on I, is a vector space over
R, and the map f �→ Df is a linear mapping of this space into the vector space of
mappings from I into E.

Remark. If one endows the vector space of mappings from I into E and its subspace of
differentiable mappings (cf. Gen. Top., X, p. 277) with the topology of simple convergence
(or the topology of uniform convergence), the linear mapping f �→ Df is not continuous (in
general) ∗for example, the sequence of functions fn(x) � sin n2x/n converges uniformly to
0 on R, but the sequence of derivatives f ′n(x) � n cos n2x does not converge even simply
to 0.∗

PROPOSITION 2. Let E and F be two topological vector spaces over R, and u a
continuous linear map from E into F. If f is a vector function defined on an interval
I ⊂ R, taking values in E, and differentiable at the point x0 ∈ I, then the composite
function u ◦ f has a derivative equal to u(f ′(x0)) at x0 .

Indeed, since
u(f(x))− u(f(x0))

x − x0
� u

(
f(x)− f(x0)
x − x0

)
, this follows from the con-

tinuity of u.

COROLLARY. If ϕ is a continuous linear form on E, then the real function ϕ ◦ f
has a derivative equal to ϕ(f ′(x0)) at the point x0.

Examples. 1) Let f � ( fi )1�i�n be a function with values in Rn, defined on an
interval I ⊂ R; each real function fi is none other than the composite function pri ◦ f, so
is differentiable at the point x0 if f is, and, if so, f ′(x0) � ( f ′i (x0))1�i�n .

∗2) In Kinematics, if f(t) is the position of a moving point M at time t, if g(t) is the
position at the same instant of the projection M′ of M onto a plane P (resp. a line D)
with kernel a line (resp. a plane) not parallel to P (resp. D), then g is the composition of
the projection u of R3 onto P (resp. D) and of f; since u is a (continuous) linear mapping
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one sees that the projection of the velocity of a moving point onto a plane (resp. a line)
is equal to the velocity of the projection of the moving point onto the plane (resp. line).∗

3) Let f be a complex-valued function defined on an interval I ⊂ R, and let a be an
arbitrary complex number; prop. 2 shows that if f is differentiable at a point x0 then so
is a f, and the derivative of this function at x0 is equal to a f ′(x0).

3. DERIVATIVE OF A PRODUCT

Let us now consider p topological vector spaces Ei (1 � i � p) over R, and a
continuous multilinear 1 map (which we shall denote by

(x1, x2, . . . , xp) �→ [[[x1.x2 . . . xp])

of E1 × E2 × · · · × Ep into a topological vector space F over R.

PROPOSITION 3 . For each index i (1 � i � p) let fi be a function defined on an
interval I ⊂ R, taking values in Ei , and differentiable at the point x0 ∈ I. Then the
function

x �→ [f1(x).f2(x) . . . fp(x)]
defined on I with values in F has a derivative equal to

p∑
i�1

[
f1(x0) . . . fi−1(x0).f ′i (x0).fi+1(x0) . . . fp(x0)

]
(1)

at x0.

Let us put h(x) � [f1(x).f2(x) . . . fp(x)]; then, by the identity

[
b1.b2 . . .bp

]− [a1.a2 . . . ap
] � p∑

i�1

[
b1 . . .bi−1.(bi − ai ).ai+1 . . . ap

]
,

we can write

h(x)− h(x0) �
p∑

i�1

[
f1(x) . . . fi−1(x).(fi (x)− fi (x0)).fi+1(x0) . . . fp(x0)

]
.

On multiplying both sides by
1

x − x0
and letting x approach x0 in I, we obtain the

expression (1), since both the map

(x1, x2, . . . , xp) �→ [x1.x2 . . . xp]

and addition in F are continuous.
1 Recall (Alg., II, p. 265) that a map f of E1 × E2 × · · · × Ep into F is said to be multilinear
if each partial mapping

xi �→ f(a1, . . . , ai−1, xi , ai+1, . . . , ap)

from Ei into F (1 � i � p) is a linear map, the a j for indices j �� i being arbitrary
in E j . We note that if the Ei are finite dimensional over R then every multilinear map of
E1 × E2 × · · · × Ep into F is necessarily continuous; this need not be so if some of these
spaces are topological vector spaces of infinite dimension.
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When some of the functions fi are constant, the terms in the expression (1)
containing their derivatives f′i (x0) are zero.

Let us consider in detail the particular case p � 2, the most important in applica-
tions: if (x, y) �→ [

x.y
]
is a continuous bilinear map of E×F into G,

(
E, F,G being

topological vector spaces overR
)
, and f and g are two vector functions, differentiable

at x0, with values in E and F respectively, then the vector function x �→ [
f(x).g(x)

]
(which we denote by

[
f.g
]
) has a derivative equal to

[
f ′(x0).g(x0)

] + [f(x0).g′(x0)]
at x0. In particular, if a is a constant vector, then

[
a.f
]
(resp.

[
f.a
]
) has a derivative

equal to
[
a.f ′(x0)

]
(resp.

[
f ′(x0).a

]
) at x0.

If f and g are both differentiable on I then so is
[
f.g
]
, and we have[

f.g
]′ � [f ′.g]+ [f.g′]. (2)

Examples. 1) Let f be a real function, g a vector function, both differentiable at
a point x0; the function g f has a derivative equal to g′(x0) f (x0) + g(x0) f ′(x0) at x0. In
particular, if a is constant, then a f has derivative a f ′(x0). This last remark, in conjunction
with example 1 of I, p. 5, proves that if f � ( fi )1�i�n is a vector function with values in
Rn, then for f to be differentiable at the point x0 it is necessary and sufficient that each of
the real functions fi (1 � i � n) be differentiable there: for, if (ei )1�i�n is the canonical

basis of Rn, we can write f �
n∑

i�1
ei fi .

2) The real function xn arises from the multilinear function

(x1, x2, . . . , xn) �→ x1x2 . . . xn

defined on Rn, by substituting x for each of the xi ; so prop. 3 shows that xn is differentiable
on R and has derivative nxn−1. As a result the polynomial function a0xn + a1xn−1+ · · · +
an−1x + an (the ai being constant vectors) has derivative

na0xn−1 + (n − 1)a1xn−2 + · · · + an−1;

when the ai are real numbers this function coincides with the derivative of a polynomial
function as defined in Algebra (A, IV).

3) The euclidean scalar product (x | y) (Gen. Top., VI, p. 40) is a bilinear map
(necessarily continuous) of Rn×Rn into R. If f and g are two vector functions with values
in Rn, and differentiable at the point x0, then the real function x �→ (f(x) | g(x)) has a
derivative equal to (f ′(x0) | g(x0)) + (f(x0) | g′(x0)) at the point x0. There is an analogous
result for the hermitian scalar product on Cn, this space being considered as a vector space
over R.

Let us consider in particular the case where the euclidean norm ‖f(x)‖ is constant,
so that (f(x) | f(x)) � ‖f(x)‖2 is also constant; on writing that the derivative of (f(x) | f(x))
vanishes at x0 we obtain (f(x0) | f ′(x0)) � 0; in other words, f ′(x0) is orthogonal to f(x0).

4) If E is a topological algebra over R (cf. Introduction), the product xy of two
elements of E is a continuous bilinear function of (x, y); if f and g have their values in E
and are differentiable at the point x0, then the function x �→ f(x)g(x) has a derivative equal
to f ′(x0)g(x0)+ f(x0)g′(x0) at x0. In particular, if U (x) � (αi j (x)) and V (x) � (βi j (x)) are
two square matrices of order n, differentiable at x0, their product UV has a derivative
equal to U ′(x0)V (x0)+U (x0)V ′(x0) at x0 (where U ′(x) � (α′

i j (x)) and V ′(x) � (β ′
i j (x))).

5) The determinant det(x1, x2, . . . , xn) of n vectors xi � (xi j )1� j�n from the space Rn

(Alg., III, p. 522) being a (continuous) multilinear function of the xi , one sees that if the
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n2 real functions fi j are differentiable at x0, then their determinant g(x) � det( fi j (x)) has
a derivative equal to

n∑
i�1

[
f1(x0), . . . , fi−1(x0), f ′i (x0), fi+1(x0), . . . , fn(x0)

]

at x0, where fi (x) � ( fi j (x))1� j�n ; in other words, one obtains the derivative of a deter-
minant of order n by taking the sum of the n determinants formed by replacing, for each
i, the terms of the i th column by their derivatives.

Remark. IfU (x) is a square matrix which is differentiable and invertible at the point
x0, then the derivative of its determinantΔ(x) � det(U (x)) can be expressed through
the derivative of U (x) by the formula

Δ′(x0) � Δ(x0).Tr(U
′(x0)U−1(x0)). (3)

Indeed, let us putU (x0+h) � U (x0)+hV ; then, by definition, V tends toU ′(x0)
when h tends to 0. One can write

Δ(x0 + h) � Δ(x0). det(I + hVU−1(x0)).

Now det(I + hX ) � 1 + hTr(X ) +
n∑

k�2
λkhk, the λk (k � 2) being polynomials in

the elements of the matrix X ; since the elements of VU−1(x0) have a limit when h
tends to 0, we indeed obtain the formula (3).

4. DERIVATIVE OF THE INVERSE OF A FUNCTION

PROPOSITION 4. Let E be a complete normed algebra with a unit element over
R and let f be a function defined on an interval I ⊂ R, taking values in E, and
differentiable at the point x0 ∈ I. If y0 � f(x0) is invertible 2 in E, then the
function x �→ (f(x))−1 is defined on a neighbourhood of x0 (relative to I), and has
a derivative equal to −(f(x0))−1 f ′(x0) (f(x0))−1 at x0.

Indeed, the set of invertible elements in E is an open set on which the function
y �→ y−1 is continuous (Gen. Top., IX, p. 178); since f is continuous (relative to I) at
x0,
(
f(x)
)−1

is defined on a neighbourhood of x0, and we have(
f(x)
)−1 − (f(x0))−1 � (f(x))−1(f(x0)− f(x)

)(
f(x0)

)−1
.

The proposition thus follows from the continuity of y−1 on a neighbourhood of y0
and the continuity of xy on E× E.

2 Recall from (Alg., I, p. 15) that an element z ∈ E is said to be invertible if there exists an
element of E, denoted by z−1, such that zz−1 � z−1z � e (e being the unit element of
E).



 

§ 1. FIRST DERIVATIVE 9

Examples. 1) The most important particular case is that where E is one of the fields
R or C : if f is a function with real or complex values, differentiable at the point x0, and
such that f (x0) �� 0, then 1/ f has derivative equal to − f ′(x0)/( f (x0))2 at x0.

2) If U � (αi j (x)) is a square matrix of order n, differentiable at x0 and invertible at
this point, then U−1 has derivative equal to −U−1U ′U−1 at x0.

5. DERIVATIVE OF A COMPOSITE FUNCTION

PROPOSITION 5. Let f be a real function defined on an interval I ⊂ R, and g a
vector function defined on an interval of R containing f (I). If f is differentiable at
the point x0 and g is differentiable at the point f (x0) then the composite function
g ◦ f has a derivative equal to g′( f (x0)) f ′(x0) at x0.

Let us put h � g ◦ f ; for x �� x0 we can write

h(x)− h(x0)
x − x0

� u(x)
f (x)− f (x0)

x − x0

where we set u(x)� g( f (x))− g( f (x0))
f (x)− f (x0)

if f (x) �� f (x0), and u(x) � g′( f (x0))

otherwise. Now f (x) has limit f (x0) when x tends to x0, so u(x) has limit g′( f (x0)),
from which the proposition follows in view of the continuity of the function yx on
E× R.

6. DERIVATIVE OF AN INVERSE FUNCTION

PROPOSITION6. Let f be a homeomorphismof an interval I ⊂ R onto an interval
J � f (I) ⊂ R, and let g be the inverse homeomorphism3 . If f is differentiable at
the point x0 ∈ I, and if f ′(x0) �� 0, then g has a derivative equal to 1/ f ′(x0) at
y0 � f (x0).

For each y ∈ J we have g(y) ∈ I and u � f (g(y)); we thus can write
g(y)− g(y0)

y − y0
� g(y)− x0

f (g(y))− f (x0)
, for y �� y0. When y tends to y0 while remaining

in J and �� y0, then g(y) tends to x0 remaining in I and �� x0, and the right-hand side
in the preceding formula thus has limit 1/ f ′(x0), since by hypothesis f ′(x0) �� 0.

COROLLARY. If f is differentiable on I and if f ′(x) �� 0 on I, then g is differ-
entiable on J and its derivative at each point y ∈ J is 1/ f ′(g(y)).

For example, for each integer n > 0, the function x1/n is a homeomorphism of R+
onto itself, is the inverse of xn, and has derivative 1

n x
1
n −1 at each x > 0.

One deduces easily, from prop. 5, that for every rational number r � p/q > 0 the
function xr � (x1/q

)p
has derivative r xr−1 at every x > 0.

3 For f to be a homeomorphism of I onto a subset of R we know that it is necessary and
sufficient that f be continuous and strictly monotone on I (Gen. Top., IV, p. 338, th. 5).
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Remarks. 1) All the preceding propositions, stated for functions differentiable at a point
x0, immediately yield propositions for functions which are right (resp. left) differentiable
at x0, when, instead of the functions themselves, one considers their restrictions to the
intersection of their intervals of definition with the interval [[[x0,+∞[[[ (resp. ]]] −∞, x0]]]);
we leave it to the reader to state them.

2) The preceding definitions and propositions (except for those concerning right and left
derivatives) extend easily to the case where one replaces R by an arbitrary commutative non-
discrete topological field K, and the topological vector spaces (resp. topological algebras)
over R by topological vector spaces (resp. topological algebras) over K. In def. 1 and
props. 1, 2 and 3 it is enough to replace I by a neighbourhood of x0 in K; in prop. 4 one
must assume further that the map y �→ y−1 is defined and continuous on a neighbourhood
of f(x0) in E. Prop. 5 generalizes in the following manner: let K′ be a non-discrete subfield
of the topological field K, let E be a topological vector space over K; let f be a function
defined on a neighbourhood V ⊂ K′ of x0 ∈ K′, with values in K (considered as a
topological vector space over K′), differentiable at x0, and let g be a function defined on
a neighbourhood of f (x0) ∈ K, with values in E, and differentiable at the point f (x0);
then the map g ◦ f is differentiable at x0 and has derivative g′( f (x0)) f ′(x0) there (E being
then considered as a topological vector space over K′).

With the same notation, let f be a function defined on a neighbourhood V of a ∈ K,
with values in E, and differentiable at the point a; if a ∈ K′, then the restriction of f to
V ∩ K′ is differentiable at a, and has derivative f ′(a) there. These considerations apply
above all, in practice, to the case where K � C and K′ � R.

Finally, prop. 6 extends to the case where one replaces I by a neighbourhood of x0 ∈ K,
and f by a homeomorphism of I onto a neighbourhood J � f (I) of y0 � f (x0) in K.

7. DERIVATIVES OF REAL-VALUED FUNCTIONS

The preceding definitions and propositions may be augmented in several respects
when we deal with real-valued functions of a real variable.

In the first place, if f is such a function, defined on an interval I ⊂ R, and
continuous relative to I at a point x0 ∈ I, it can happen that when x tends to x0 while

remaining in I and �� x0, that
f (x)− f (x0)

x − x0
has a limit equal to+∞ or to−∞; one

then says that f is differentiable at x0 and has derivative +∞ (resp. −∞) there; if
the function f has a derivative f ′(x) (finite or infinite) at every point x of I, then
the function f ′ (with values in R) is again called the derived function (or simply the
derivative) of f. One generalizes the definitions of right and left derivative similarly.

Example. At the point x � 0 the function x1/3 (the inverse function of x3, a home-
omorphism of R onto itself) has a derivative, equal to +∞; at x � 0 the function |x |1/3

has right derivative +∞ and left derivative −∞.

The formulae for the derivative of a sum, of a product of differentiable real
functions, and for the inverse of a differentiable function (props. 1, 3 and 4), as well
as for the derivative of a (real-valued) composition of functions (prop. 5) remain
valid when the derivatives that occur are infinite, so long as all the expressions that
occur in these formulae make sense (Gen. Top., IV, p. 345–346). In fact, if in prop. 6
one supposes that f is strictly increasing (resp. strictly decreasing) and continuous
on I, and if f ′(x0) � 0, then the inverse function g has a derivative equal to +∞
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