N. BOURBAKI ELEMENTS OF MATHEMATICS

Functions of a Real Variable

Elementary Theory

Springer

ELEMENTS OF MATHEMATICS

Springer Berlin Heidelberg New York Hong Kong London Milan Paris Paris Tokyo

NICOLAS BOURBAKI

ELEMENTS OF MATHEMATICS Functions of a Real Variable

Elementary Theory

Originally published as Fonctions d'une variable réelle ©Hermann, Paris, 1976 and Nicolas Bourbaki, 1982

> Translator Philip Spain University of Glasgow Department of Mathematics University Gardens Glasgow G12 8QW Scotland e-mail: pgs@maths.gla.ac.uk

This work has been published with the help of the French *Ministère de la Culture and Centre national du livre*

Mathematics Subject Classification (2000): 26-02, 26A06, 26A12, 26A15, 26A24, 26A42, 26A51, 34A12, 34A30, 46B03

Cataloging-in-Publication Data applied for A catalog record for this book is available from the Library of Congress. Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de

ISBN-13:978-3-642-63932-6 e-ISBN-13:978-3-642-59315-4 DOI: 10.1007/978-3-642-59315-4

Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH http://www.springer.de © Springer-Verlag Berlin Heidelberg 2004 Softcover reprint of the hardcover lst edition 2004

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: by the Translator and Frank Herweg, Leutershausen Cover Design: *Design & Production* GmbH, Heidelberg Printed on acid-free paper 41/3142 db 5 4 3 2 1 0

To the reader

1. The Elements of Mathematics Series takes up mathematics at the beginning, and gives complete proofs. In principle, it requires no particular knowledge of mathematics on the readers' part, but only a certain familiarity with mathematical reasoning and a certain capacity for abstract thought. Nevertheless it is directed especially to those who have a good knowledge of at least the content of the first year or two of a university mathematics course.

2. The method of exposition we have chosen is axiomatic, and normally proceeds from the general to the particular. The demands of proof impose a rigorously fixed order on the subject matter. It follows that the utility of certain considerations may not be immediately apparent to the reader until later chapters unless he has already a fairly extended knowledge of mathematics.

3. The series is divided into Books and each Book into chapters. The Books already published, either in whole or in part, in the French edition, are listed below. When an English translation is available, the corresponding English title is mentioned between parentheses. Throughout the volume a reference indicates the English edition, when available, and the French edition otherwise.

Théorie des Ensembles (Theory of Sets)	designated by	Е	(Set Theory)
Algèbre (Algebra) ¹	_	А	(Alg)
Topologie Générale (General Topology)	_	TG	(Gen. Top.)
Fonctions d'une Variable Réelle			
(Functions of a Real Variable) ²	_	FVR	(FRV)
Espaces Vectoriels Topologiques			
(Topological Vector Spaces)	_	EVT	(Top. Vect. Sp.)
Intégration	_	INT	
Algèbre Commutative (Commutative Algebra) ³	_	AC	(Comm. Alg.)
Variétes Différentielles et Analytiques	_	VAR	
Groupes et Algèbres de Lie			
(Lie Groups and Lie Algebras) ⁴	_	LIE	(LIE)
Théories Spectrales		TS	

In the first six Books (according to the above order), every statement in the text assumes as known only those results which have already discussed in the same

¹ So far, chapters I to VII only have been translated.

² This volume!

³ So far, chapters I to VII only have been translated.

⁴ So far, chapters I to III only have been translated.

TO THE READER

chapter, or in the previous chapters ordered as follows: E; A, chapters I to III; TG, chapters I to III; A, from chapter IV on; TG, from chapter IV on; FVR; EVT; INT.

From the seventh Book on, the reader will usually find a precise indication of its logical relationship to the other Books (the first six Books being always assumed to be known).

4. However, we have sometimes inserted examples in the text which refer to facts which the reader may already know but which have not yet been discussed in the Series. Such examples are placed between two asterisks : *...*. Most readers will undoubtedly find that these examples will help them to understand the text. In other cases, the passages between *...* refer to results which are discussed elsewhere in the Series. We hope the reader will be able to verify the absence of any vicious circle.

5. The logical framework of each chapter consists of the *definitions*, the *axioms*, and the *theorems* of the chapter. These are the parts that have mainly to be borne in mind for subsequent use. Less important results and those which can easily be deduced from the theorems are labelled as "propositions", "lemmas", "corollaries", "remarks", etc. Those which may be omitted at a first reading are printed in small type. A commentary on a particularly important theorem appears occasionally under the name of "scholium".

To avoid tedious repetitions it is sometimes convenient to introduce notation or abbreviations which are in force only within a certain chapter or a certain section of a chapter (for example, in a chapter which is concerned only with commutative rings, the word "ring" would always signify "commutative ring"). Such conventions are always explicitly mentioned, generally at the beginning of the *chapter* in which they occur.

6. Some passages are designed to forewarn the reader against serious errors. These passages are signposted in the margin with the sign ("dangerous bend").

7. The Exercises are designed both to enable the reader to satisfy himself that he has digested the text and to bring to his notice results which have no place in the text but which are nonetheless of interest. The most difficult exercises bear the sign \P .

8. In general we have adhered to the commonly accepted terminology, *except* where there appeared to be good reasons for deviating from it.

9. We have made a particular effort always to use rigorously correct language, without sacrificing simplicity. As far as possible we have drawn attention in the text to *abuses of language*, without which any mathematical text runs the risk of pedantry, not to say unreadability.

10. Since in principle the text consists of a dogmatic exposition of a theory, it contains in general no references to the literature. Bibliographical are gathered together in *Historical Notes*. The bibliography which follows each historical note contains in general only those books and original memoirs which have been of the greatest importance in the evolution of the theory under discussion. It makes no sort of pretence to completeness.

As to the exercises, we have not thought it worthwhile in general to indicate their origins, since they have been taken from many different sources (original papers, textbooks, collections of exercises).

VI

TO THE READER

11. In the present Book, references to theorems, axioms, definitions,... are given by quoting successively:

– the Book (using the abbreviation listed in Section 3), chapter and page, where they can be found ;

- the chapter and page only when referring to the present Book.

The Summaries of Results are quoted by to the letter R; thus Set Theory, R signifies "Summary of Results of the Theory of Sets".

TO THE REA	DER	 •••	 	••••	 	••••••	V
CONTENTS		 •••	 	••••	 	••••••••••	IX

CHAPTER I DERIVATIVES

§1.	FIR	ST DERIVATIVE	3
	1.	Derivative of a vector function	3
	2.	Linearity of differentiation	5
	3.	Derivative of a product	6
	4.	Derivative of the inverse of a function	8
	5.	Derivative of a composite function	9
	6.	Derivative of an inverse function	9
	7.	Derivatives of real-valued functions	10
§2.	тн	E MEAN VALUE THEOREM	12
Ū	1	Rolle's Theorem	12
	2	The mean value theorem for real-valued functions	13
	3	The mean value theorem for vector functions	15
	4.	Continuity of derivatives	18
§3.	DE	RIVATIVES OF HIGHER ORDER	20
0	1	Derivatives of order <i>n</i>	20
	2.	Taylor's formula	21
§4.	CO	NVEX FUNCTIONS OF A REAL VARIABLE	23
	1	Definition of a convex function	24
	2	Families of convex functions	27
	3	Continuity and differentiability of convex functions	27
	4.	Criteria for convexity	30
Exe	rcise	s on §1	35
Exe	rcise	s on §2	37

X CONTENTS

Exercises on §3	 39
Exercises on §4	 45

CHAPTER II PRIMITIVES AND INTEGRALS

§1.	PRI	MITIVES AND INTEGRALS	51
	1.	Definition of primitives	51
	2.	Existence of primitives	52
	3.	Regulated functions	53
	4.	Integrals	56
	5. 6.	Properties of integrals	59
		primitives of higher order	62
§2.	INT	EGRALS OVER NON-COMPACT INTERVALS	62
	1.	Definition of an integral over a non-compact interval	62
	2.	Integrals of positive functions over a non-compact interval	66
	3.	Absolutely convergent integrals	67
§3.	DEI	RIVATIVES AND INTEGRALS	
	OF	FUNCTIONS DEPENDING ON A PARAMETER	68
	1.	Integral of a limit of functions on a compact interval	68
	2.	Integral of a limit of functions on a non-compact interval	69
	3.	Normally convergent integrals	72
	4.	Derivative with respect to a parameter of an integral	
		over a compact interval	73
	5.	Derivative with respect to a parameter of an integral	
		over a non-compact interval	75
	6.	Change of order of integration	76
Exer	cise	s on §1	79
Exer	cise	s on §2	84
Exer	cise	s on §3	86

CHAPTER III ELEMENTARY FUNCTIONS

§1.	DE	RIVATIVES OF THE EXPONENTIAL	
	AN	D CIRCULAR FUNCTIONS	91
	1.	Derivatives of the exponential functions; the number <i>e</i>	91
	2.	Derivative of $\log_a x$	93
	3.	Derivatives of the circular functions; the number π	94
	4.	Inverse circular functions	95

XI

	5. 6. 7. 8.	The complex exponential Properties of the function e^z The complex logarithm Primitives of rational functions Complex circular functions hyperbolic functions	97 98 100 101
§2.	EXI ANI ANI	PANSIONS OF THE EXPONENTIAL O CIRCULAR FUNCTIONS, O OF THE FUNCTIONS ASSOCIATED WITH THEM	102
	1. 2.	Expansion of the real exponential \dots Expansions of the complex exponential, of $\cos x$ and $\sin x$.	105 105 106
	3. 4.	The binomial expansion \dots Expansions of $\log(1 + x)$, of Arc tan x and of Arc sin x \dots	107 111
Exer Exer Hist Bibl	rcise rcise orica iogra	s on §1 s on §2 Il Note (Chapters I-II-III) aphy	115 125 129 159

CHAPTER IV DIFFERENTIAL EQUATIONS

§1 .	EX	ISTENCE THEOREMS	163
	1.	The concept of a differential equation	163
	2.	Differential equations admitting solutions that are primitives	
		of regulated functions	164
	3.	Existence of approximate solutions	166
	4.	Comparison of approximate solutions	168
	5.	Existence and uniqueness of solutions	
		of Lipschitz and locally Lipschitz equations	171
	6.	Continuity of integrals as functions of a parameter	174
	7.	Dependence on initial conditions	176
§2.	LIN	EAR DIFFERENTIAL EQUATIONS	177
	1.	Existence of integrals of a linear differential equation	177
	2.	Linearity of the integrals of a linear differential equation	179
	3.	Integrating the inhomogeneous linear equation	182
	4.	Fundamental systems of integrals of a linear system	
		of scalar differential equations	183
	5.	Adjoint equation	186
	6.	Linear differential equations with constant coefficients	188
	7.	Linear equations of order <i>n</i>	192
	8	Linear equations of order <i>n</i> with constant coefficients	194
	9	Systems of linear equations with constant coefficients	196

Exercises on §1	 199
Exercises on §2	 204
Historical Note	 207
Bibliography .	 209

CHAPTER V LOCAL STUDY OF FUNCTIONS

§1.	CO	MPARISON OF FUNCTIONS ON A FILTERED SET	211
	1.	Comparison relations: I. Weak relations	211
	2.	Comparison relations: II. Strong relations	214
	3.	Change of variable	217
	4.	Comparison relations between strictly positive functions	217
	5.	Notation	219
§2.	ASY	MPTOTIC EXPANSIONS	220
	1.	Scales of comparison	220
	2.	Principal parts and asymptotic expansions	221
	3.	Sums and products of asymptotic expansions	223
	4.	Composition of asymptotic expansions	224
	5.	Asymptotic expansions with variable coefficients	226
§3.	ASY	MPTOTIC EXPANSIONS OF FUNCTIONS	
	OF	A REAL VARIABLE	227
	1.	Integration of comparison relations: I. Weak relations	228
	2.	Application: logarithmic criteria for convergence of integrals	229
	3.	Integration of comparison relations: II. Strong relations	230
	4.	Differentiation of comparison relations	232
	5.	Principal part of a primitive	233
	6.	Asymptotic expansion of a primitive	235
§4.	API	PLICATION TO SERIES WITH POSITIVE TERMS	236
	1.	Convergence criteria for series with positive terms	236
	2.	Asymptotic expansion of the partial sums of a series	238
	3.	Asymptotic expansion of the partial products	
		of an infinite product	243
	4.	Application: convergence criteria of the second kind for series	
		with positive terms	244
AP	PEN		247
	1.	Hardy fields	247
	2.	Extension of a Hardy field	248
	3.	Comparison of functions in a Hardy field	250

XII

XIII

 (H) Functions	. 252 . 253 . 255
Exercises on §1	. 259
Exercises on §3	. 260
Exercises on §4	. 261
Exercises on Appendix	. 263

CHAPTER VI GENERALIZED TAYLOR EXPANSIONS. EULER-MACLAURIN SUMMATION FORMULA

81.	GEI	NERALIZED TAYLOR EXPANSIONS	269
3	1	Composition operators on an algebra of polynomials	260
	1. 2	Appell polynomials attached to a composition operator	209
	2. 2	Generating series for the Appell polynomials	274
	э. 1	Demovili nelymenticle	274
	4. 5	Composition encoders on functions of a real variable	213
	э. с	Composition operators on functions of a real variable	211
	б. Л	Indicatrix of a composition operator	278
	1.	The Euler-Maclaurin summation formula	282
§2.	EUI	LERIAN EXPANSIONS	
0	OF	THE TRIGONOMETRIC FUNCTIONS	
	AN	D BERNOULLI NUMBERS	283
	1	Fulerian expansion of cot z	283
	1. 2	Fulerian expansion of sin z	205
	2. 3	Application to the Bernoulli numbers	280
	5.		207
§3.	BO	UNDS FOR THE REMAINDER	
Ū	IN 7	THE EULER-MACLAURIN SUMMATION FORMULA	288
	1.	Bounds for the remainder	
		in the Euler-Maclaurin summation formula	288
	2.	Application to asymptotic expansions	289
Exe	rcise	s on §1	291
Exe	rcise	s on §2	292
Exe	rcise	s on §3	296
Hist	orice	I Note (Chapters V and VI)	299
Diki	liagen	nahu	202
DIDI	nogra	арпу	303

XIV

CHAPTER VII THE GAMMA FUNCTION

§1. THE GAMMA FUNCTION IN THE REAL DOMAIN	305
1. Definition of the Gamma function	305
2. Properties of the Gamma function	307
3. The Euler integrals	310
§2. THE GAMMA FUNCTION IN THE COMPLEX DOMAIN	315
1. Extending the Gamma function to C	315
2. The complements' relation and the Legendre-Gauss	
multiplication formula	316
3. Stirling's expansion	319
Exercises on §1	325
Exercises on §2	327
Historical Note	329
Bibliography	331
INDEX OF NOTATION	333
INDEX	335

INTRODUCTION

The purpose of this Book is the elementary study of the infinitesimal properties of *one* real variable; the extension of these properties to functions of *several* real variables, or, all the more, to functions defined on more general spaces, will be treated only in later Books.

The results which we shall demonstrate will be useful above all in relation to (finite) real-valued functions of a real variable; but most of them extend without further argument to functions of a real variable taking values in a *topological vector space* over \mathbf{R} (see below); as these functions occur frequently in Analysis we shall state for them all results which are not specific to real-valued functions.

The notion of a topological vector space, of which we have just spoken, is defined and studied in detail in Book V of this Series; but we do not need *any* of the results of Book V in this Book; some definitions, however, are needed, and we shall reproduce them below for the convenience of the reader.

We shall not repeat the definition of a *vector space* over a (*commutative*) field K (Alg., II, p. 193). ¹ A topological vector space E over a topological field K is a vector space over K endowed with a topology such that the functions $\mathbf{x} + \mathbf{y}$ and $\mathbf{x}t$ are *continuous* on E × E and E × K respectively; in particular, such a topology is compatible with the structure of the additive group of E. All topological vector spaces considered in this Book are implicitly assumed to be Hausdorff. When the topological group E is complete one says that the topological vector space E is *complete*. Every *normed* vector space over a *valued field* K (*Gen. Top.*, IX, p. 169) ² is a topological vector space over K.

Let E be a vector space (with or without a topology) over the real field **R**; if **x**, **y** are arbitrary points in E the set of points $\mathbf{x}t + \mathbf{y}(1-t)$ where *t* runs through the closed

² We recall that a *norm* on E is a real function $\|\mathbf{x}\|$ defined on E, taking finite non-negative values, such that the relation $\|\mathbf{x}\| = 0$ is equivalent to $\mathbf{x} = 0$ and such that

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$
 and $\|\mathbf{x}t\| = \|\mathbf{x}\| \cdot |t|$

for all $t \in K$ (|t| being the absolute value of t in K).

¹ The elements (or *vectors*) of a vector space E over a commutative field K will usually be denoted in this chapter by thick minuscules, and scalars by roman minuscules; most often we shall place the scalar t to the *right* in the product of a vector **x** by t, writing the product as **x**t; on occasion we will allow ourselves to use the left notation t**x** in certain cases where it is more convenient; also, sometimes we shall write the product of the scalar 1/t ($t \neq 0$) and the vector **x** in the form **x**/t.

INTRODUCTION

segment [0, 1] of **R** is called the *closed segment* with endpoints **x**, **y**. One says that a subset A of E is *convex* if for any **x**, **y** in A the closed segment with endpoints **x** and **y** is contained in A. For example, an affine linear variety is convex; so is any closed segment; in \mathbb{R}^n any parallelotope (*Gen. Top.*, VI, p. 34) is convex. Every intersection of convex sets is convex.

We say that a topological vector space E over the field **R** is *locally convex* if the origin (and thus any point of E) has a fundamental system of *convex* neighbourhoods. Every *normed* space is locally convex; indeed, the balls $||\mathbf{x}|| \leq r$ (r > 0) form a fundamental system of neighbourhoods of 0 in E, and each of these is convex, for the relations $||\mathbf{x}|| \leq r$, $||\mathbf{y}|| \leq r$ imply that

$$\|\mathbf{x}t + \mathbf{y}(1-t)\| \leq \|\mathbf{x}\| t + \|\mathbf{y}\| (1-t) \leq r$$

for $0 \leq t \leq 1$.

Finally, a *topological algebra* A over a (commutative) *topological field* K is an algebra over K endowed with a topology for which the functions $\mathbf{x} + \mathbf{y}$, \mathbf{xy} and $\mathbf{x}t$ are continuous on A × A, A × A and A × K respectively; when one endows A only with its topology and vector space structure over K then A is a topological vector space. Every *normed algebra* over a *valued field* K (*Gen. Top.*, IX, p. 175) is a topological algebra over K.

CHAPTER I Derivatives

§1. FIRST DERIVATIVE

As was said in the Introduction, in this chapter and the next we shall study the infinitesimal properties of functions which are defined on a subset of the real field **R** and take their values in a *Hausdorff topological vector space* E over the field **R**; for brevity we shall say that such a function is a *vector function of a real variable*. The most important case is that where $E = \mathbf{R}$ (real-valued functions of a real variable). When $E = \mathbf{R}^n$, consideration of a vector function with values in E reduces to the simultaneous consideration of *n* finite real functions.

Many of the definitions and properties stated in chapter I extend to functions which are defined on a subset of the field C of complex numbers and take their values in a topological vector space over C (vector functions of a complex variable). Some of these definitions and properties extend even to functions which are defined on a subset of an arbitrary commutative *topological field* K and take their values in a topological vector space over K.

We shall indicate these generalizations in passing (see in particular I, p. 10, *Remark 2*), emphasising above all the case of functions of a complex variable, which are by far the most important, together with functions of a real variable, and will be studied in greater depth in a later Book.

1. DERIVATIVE OF A VECTOR FUNCTION

DEFINITION 1. Let **f** be a vector function defined on an interval $\mathbf{I} \subset \mathbf{R}$ which does not reduce to a single point. We say that **f** is differentiable at a point $x_0 \in \mathbf{I}$ if $\lim_{x \to x_0, x \in \mathbf{I}, x \neq x_0} \frac{\mathbf{f}(x) - \mathbf{f}(x_0)}{x - x_0}$ exists (in the vector space where **f** takes its values); the

 $\lim_{x \to x_0, x \in I, x \neq x_0} \frac{1}{x - x_0} \quad \text{exists (in the vector space where I takes its values); the value of this limit is called the first derivative (or simply the derivative) of$ **f** $at the point <math>x_0$, and it is denoted by $\mathbf{f}'(x_0)$ or $\mathbf{Df}(x_0)$.

If **f** is differentiable at the point x_0 , so is the *restriction* of **f** to any interval $J \subset I$ which does not reduce to a single point and such that $x_0 \in J$; and the derivative of this restriction is equal to $\mathbf{f}'(x_0)$. Conversely, let J be an interval contained in I and containing a neighbourhood of x_0 relative to I; if the restriction of **f** to J admits a derivative at the point x_0 , then so does **f**.

DERIVATIVES

We summarise these properties by saying that the concept of derivative is a *local* concept.

Remarks. *1) In Kinematics, if the point $\mathbf{f}(t)$ is the position of a moving point in the space \mathbf{R}^3 at time t, then $\frac{\mathbf{f}(t) - \mathbf{f}(t_0)}{t - t_0}$ is termed the *average velocity* between the instants t_0 and t, and its limit $\mathbf{f}'(t_0)$ is the *instantaneous velocity* (or simply *velocity*) at the time t_0 (when this limit exists).*

2) If a function **f**, defined on I, is differentiable at a point $x_0 \in I$, it is necessarily *continuous relative to* I at this point.

DEFINITION 2. Let **f** be a vector function defined on an interval $I \subset \mathbf{R}$, and let x_0 be a point of I such that the interval $I \cap [x_0, +\infty[$ (resp. $I \cap] -\infty, x_0]$) does not reduce to a single point. We say that **f** is differentiable on the right (resp. on the left) at the point x_0 if the restriction of **f** to the interval $I \cap [x_0, +\infty[$ (resp. $I \cap] -\infty, x_0]$) is differentiable at the point x_0 ; the value of the derivative of this restriction at the point x_0 is called the right (resp. left) derivative of **f** at the point x_0 and is denoted by $\mathbf{f}'_d(x_0)$ (resp. $\mathbf{f}'_g(x_0)$).

Let **f** be a vector function defined on I, and x_0 an *interior* point of I such that **f** is continuous at this point; it follows from defs. 1 and 2 that for **f** to be differentiable at x_0 it is necessary and sufficient that **f** admit both a right and a left derivative at this point, and that these derivatives be *equal*; and then

$$\mathbf{f}'(x_0) = \mathbf{f}'_d(x_0) = \mathbf{f}'_a(x_0).$$

Examples. 1) A constant function has zero derivative at every point.

2) An affine linear function $x \mapsto \mathbf{a}x + \mathbf{b}$ has derivative equal to \mathbf{a} at every point. 3) The real function 1/x (defined for $x \neq 0$) is differentiable at each point $x_0 \neq 0$,

for we have $\left(\frac{1}{x} - \frac{1}{x_0}\right) / (x - x_0) = -\frac{1}{xx_0}$, and, since 1/x is continuous at x_0 , the limit

of the preceding expression is $-1/x_0^2$. 4) The scalar function |x|, defined on **R**, has right derivative +1 and left derivative -1 at x = 0; it is not differentiable at this point.

*5) The real function equal to 0 for x = 0, and to $x \sin 1/x$ for $x \neq 0$, is defined and continuous on **R**, but has neither right nor left derivative at the point $x \neq 0$._{*} One can give examples of functions which are continuous on an interval and fail to have a derivative at *every* point of the interval (I, p. 35, exerc. 2 and 3).

DEFINITION 3. We say that a vector function \mathbf{f} defined on an interval $\mathbf{I} \subset \mathbf{R}$ is differentiable (resp. right differentiable, left differentiable) on I if it is differentiable (resp. right differentiable, left differentiable) at each point of I; the function $x \mapsto$ $\mathbf{f}'(x)$ (resp. $x \mapsto \mathbf{f}'_d(x), x \mapsto \mathbf{f}'_g(x)$) defined on I, is called the derived function, or (by abuse of language) the derivative (resp. right derivative, left derivative) of \mathbf{f} , and is denoted by \mathbf{f}' or D \mathbf{f} or d \mathbf{f}/dx (resp. $\mathbf{f}'_d, \mathbf{f}'_g$).

Remark. A function may be differentiable on an interval without its derivative being continuous at every point of the interval (cf. I, p. 36, exerc. 5); *this is shown by the

§1.

FIRST DERIVATIVE

example of the function equal to 0 for x = 0 and to $x^2 \sin 1/x$ for $x \neq 0$; it has a derivative everywhere, but this derivative is discontinuous at the point x = 0.

2. LINEARITY OF DIFFERENTIATION

PROPOSITION 1. The set of vector functions defined on an interval $\mathbf{I} \subset \mathbf{R}$, taking values in a given topological vector space E, and differentiable at the point x_0 , is a vector space over \mathbf{R} , and the map $\mathbf{f} \mapsto D\mathbf{f}(x_0)$ is a linear mapping of this space into E.

In other words, if **f** and **g** are defined on I and differentiable at the point x_0 , then **f** + **g** and **f***a* (*a* an arbitrary scalar) are differentiable at x_0 and their derivatives there are $\mathbf{f}'(x_0) + \mathbf{g}'(x_0)$ and $\mathbf{f}'(x_0)a$ respectively. This follows immediately from the continuity of $\mathbf{x} + \mathbf{y}$ and of $\mathbf{x}a$ on $\mathbf{E} \times \mathbf{E}$ and \mathbf{E} respectively.

COROLLARY. The set of vector functions defined on an interval I, taking values in a given topological vector space E, and differentiable on I, is a vector space over **R**, and the map $\mathbf{f} \mapsto D\mathbf{f}$ is a linear mapping of this space into the vector space of mappings from I into E.

Remark. If one endows the vector space of mappings from I into E and its subspace of differentiable mappings (*cf. Gen. Top.*, X, p. 277) with the topology of simple convergence (or the topology of uniform convergence), the linear mapping $\mathbf{f} \mapsto D\mathbf{f}$ is not continuous (in general) *for example, the sequence of functions $\mathbf{f}_n(x) = \sin n^2 x/n$ converges uniformly to 0 on **R**, but the sequence of derivatives $\mathbf{f}'_n(x) = n \cos n^2 x$ does not converge even simply to 0_{\star}

PROPOSITION 2. Let E and F be two topological vector spaces over **R**, and **u** a continuous linear map from E into F. If **f** is a vector function defined on an interval $I \subset \mathbf{R}$, taking values in E, and differentiable at the point $x_0 \in I$, then the composite function $\mathbf{u} \circ \mathbf{f}$ has a derivative equal to $\mathbf{u}(\mathbf{f}'(x_0))$ at x_0 .

Indeed, since
$$\frac{\mathbf{u}(\mathbf{f}(x)) - \mathbf{u}(\mathbf{f}(x_0))}{x - x_0} = \mathbf{u}\left(\frac{\mathbf{f}(x) - \mathbf{f}(x_0)}{x - x_0}\right)$$
, this follows from the con-

tinuity of **u**.

COROLLARY. If φ is a continuous linear form on E, then the real function $\varphi \circ \mathbf{f}$ has a derivative equal to $\varphi(\mathbf{f}'(x_0))$ at the point x_0 .

Examples. 1) Let $\mathbf{f} = (f_i)_{1 \leq i \leq n}$ be a function with values in \mathbf{R}^n , defined on an interval $\mathbf{I} \subset \mathbf{R}$; each real function f_i is none other than the composite function $\mathrm{pr}_i \circ \mathbf{f}$, so is differentiable at the point x_0 if \mathbf{f} is, and, if so, $\mathbf{f}'(x_0) = (f'_i(x_0))_{1 \leq i \leq n}$.

*2) In Kinematics, if $\mathbf{f}(t)$ is the position of a moving point M at time t, if $\mathbf{g}(t)$ is the position at the same instant of the projection M' of M onto a plane P (resp. a line D) with kernel a line (resp. a plane) not parallel to P (resp. D), then **g** is the composition of the projection **u** of \mathbf{R}^3 onto P (resp. D) and of **f**; since **u** is a (continuous) linear mapping

DERIVATIVES

one sees that the projection of the velocity of a moving point onto a plane (resp. a line) is equal to the velocity of the projection of the moving point onto the plane (resp. line). $_*$

3) Let f be a complex-valued function defined on an interval $I \subset \mathbf{R}$, and let a be an arbitrary complex number; prop. 2 shows that if f is differentiable at a point x_0 then so is af, and the derivative of this function at x_0 is equal to $af'(x_0)$.

3. DERIVATIVE OF A PRODUCT

Let us now consider *p* topological vector spaces E_i $(1 \le i \le p)$ over **R**, and a continuous multilinear ¹ map (which we shall denote by

$$(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_p) \mapsto [\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \ldots \cdot \mathbf{x}_p])$$

of $E_1 \times E_2 \times \cdots \times E_p$ into a topological vector space F over **R**.

PROPOSITION 3. For each index i $(1 \le i \le p)$ let \mathbf{f}_i be a function defined on an interval $\mathbf{I} \subset \mathbf{R}$, taking values in \mathbf{E}_i , and differentiable at the point $x_0 \in \mathbf{I}$. Then the function

$$x \mapsto [\mathbf{f}_1(x).\mathbf{f}_2(x)\dots\mathbf{f}_p(x)]$$

defined on I with values in F has a derivative equal to

$$\sum_{i=1}^{r} \left[\mathbf{f}_{1}(x_{0}) \dots \mathbf{f}_{i-1}(x_{0}) . \mathbf{f}_{i}'(x_{0}) . \mathbf{f}_{i+1}(x_{0}) \dots \mathbf{f}_{p}(x_{0}) \right]$$
(1)

at x_0 .

Let us put $\mathbf{h}(x) = [\mathbf{f}_1(x).\mathbf{f}_2(x)...\mathbf{f}_p(x)]$; then, by the identity

$$[\mathbf{b}_1.\mathbf{b}_2...\mathbf{b}_p] - [\mathbf{a}_1.\mathbf{a}_2...\mathbf{a}_p] = \sum_{i=1}^p [\mathbf{b}_1...\mathbf{b}_{i-1}.(\mathbf{b}_i - \mathbf{a}_i).\mathbf{a}_{i+1}...\mathbf{a}_p],$$

we can write

$$\mathbf{h}(x) - \mathbf{h}(x_0) = \sum_{i=1}^{p} \left[\mathbf{f}_1(x) \dots \mathbf{f}_{i-1}(x) . (\mathbf{f}_i(x) - \mathbf{f}_i(x_0)) . \mathbf{f}_{i+1}(x_0) \dots \mathbf{f}_p(x_0) \right].$$

On multiplying both sides by $\frac{1}{x - x_0}$ and letting *x* approach x_0 in I, we obtain the expression (1), since both the map

$$(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_p) \mapsto [\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \ldots \cdot \mathbf{x}_p]$$

and addition in F are continuous.

¹ Recall (*Alg.*, II, p. 265) that a map **f** of $E_1 \times E_2 \times \cdots \times E_p$ into F is said to be *multilinear* if each partial mapping

$$\mathbf{x}_i \mapsto \mathbf{f}(\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{x}_i, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_p)$$

from E_i into F ($1 \le i \le p$) is a *linear* map, the a_j for indices $j \ne i$ being arbitrary in E_j . We note that if the E_i are *finite* dimensional over **R** then every multilinear map of $E_1 \times E_2 \times \cdots \times E_p$ into F is necessarily *continuous;* this need not be so if some of these spaces are topological vector spaces of infinite dimension.

FIRST DERIVATIVE

7

When some of the functions \mathbf{f}_i are *constant*, the terms in the expression (1) containing their derivatives $\mathbf{f}'_i(x_0)$ are zero.

Let us consider in detail the particular case p = 2, the most important in applications: if $(\mathbf{x}, \mathbf{y}) \mapsto [\mathbf{x}.\mathbf{y}]$ is a *continuous bilinear* map of $\mathbf{E} \times \mathbf{F}$ into G, $(\mathbf{E}, \mathbf{F}, \mathbf{G}$ being topological vector spaces over **R**), and **f** and **g** are two vector functions, differentiable at x_0 , with values in E and F respectively, then the vector function $x \mapsto [\mathbf{f}(x).\mathbf{g}(x)]$ (which we denote by $[\mathbf{f}.\mathbf{g}]$) has a derivative equal to $[\mathbf{f}'(x_0).\mathbf{g}(x_0)] + [\mathbf{f}(x_0).\mathbf{g}'(x_0)]$ at x_0 . In particular, if **a** is a constant vector, then $[\mathbf{a}.\mathbf{f}]$ (resp. $[\mathbf{f}.\mathbf{a}]$) has a derivative equal to $[\mathbf{a}.\mathbf{f}'(x_0)]$ (resp. $[\mathbf{f}'(x_0).\mathbf{a}]$) at x_0 .

If **f** and **g** are both differentiable on I then so is $[\mathbf{f},\mathbf{g}]$, and we have

$$[\mathbf{f}.\mathbf{g}]' = [\mathbf{f}'.\mathbf{g}] + [\mathbf{f}.\mathbf{g}'].$$
(2)

Examples. 1) Let f be a real function, \mathbf{g} a vector function, both differentiable at a point x_0 ; the function $\mathbf{g}f$ has a derivative equal to $\mathbf{g}'(x_0)f(x_0) + \mathbf{g}(x_0)f'(x_0)$ at x_0 . In particular, if \mathbf{a} is constant, then $\mathbf{a}f$ has derivative $\mathbf{a}f'(x_0)$. This last remark, in conjunction with example 1 of I, p. 5, proves that if $\mathbf{f} = (f_i)_{1 \le i \le n}$ is a vector function with values in \mathbf{R}^n , then for \mathbf{f} to be differentiable at the point x_0 it is necessary and sufficient that each of the real functions f_i ($1 \le i \le n$) be differentiable there: for, if $(\mathbf{e}_i)_{1 \le i \le n}$ is the canonical to $\mathbf{f} = (f_i)_{1 \le i \le n}$.

basis of \mathbf{R}^n , we can write $\mathbf{f} = \sum_{i=1}^n \mathbf{e}_i f_i$.

2) The real function x^n arises from the multilinear function

 $(x_1, x_2, \ldots, x_n) \mapsto x_1 x_2 \ldots x_n$

defined on \mathbb{R}^n , by substituting x for each of the x_i ; so prop. 3 shows that x^n is differentiable on \mathbb{R} and has derivative nx^{n-1} . As a result the polynomial function $\mathbf{a}_0x^n + \mathbf{a}_1x^{n-1} + \cdots + \mathbf{a}_{n-1}x + \mathbf{a}_n$ (the \mathbf{a}_i being constant vectors) has derivative

$$n\mathbf{a}_0 x^{n-1} + (n-1)\mathbf{a}_1 x^{n-2} + \dots + \mathbf{a}_{n-1};$$

when the \mathbf{a}_i are real numbers this function coincides with the derivative of a polynomial function as defined in Algebra (A, IV).

3) The euclidean *scalar product* $(\mathbf{x} | \mathbf{y})$ (*Gen. Top.*, VI, p. 40) is a bilinear map (necessarily continuous) of $\mathbf{R}^n \times \mathbf{R}^n$ into \mathbf{R} . If \mathbf{f} and \mathbf{g} are two vector functions with values in \mathbf{R}^n , and differentiable at the point x_0 , then the real function $x \mapsto (\mathbf{f}(x) | \mathbf{g}(x))$ has a derivative equal to $(\mathbf{f}'(x_0) | \mathbf{g}(x_0)) + (\mathbf{f}(x_0) | \mathbf{g}'(x_0))$ at the point x_0 . There is an analogous result for the hermitian scalar product on \mathbf{C}^n , this space being considered as a vector space *over* \mathbf{R} .

Let us consider in particular the case where the euclidean norm $\|\mathbf{f}(x)\|$ is *constant*, so that $(\mathbf{f}(x) | \mathbf{f}(x)) = \|\mathbf{f}(x)\|^2$ is also constant; on writing that the derivative of $(\mathbf{f}(x) | \mathbf{f}(x))$ vanishes at x_0 we obtain $(\mathbf{f}(x_0) | \mathbf{f}'(x_0)) = 0$; in other words, $\mathbf{f}'(x_0)$ is *orthogonal* to $\mathbf{f}(x_0)$.

4) If E is a *topological algebra* over **R** (*cf.* Introduction), the product **xy** of two elements of E is a continuous bilinear function of (\mathbf{x}, \mathbf{y}) ; if **f** and **g** have their values in E and are differentiable at the point x_0 , then the function $x \mapsto \mathbf{f}(x)\mathbf{g}(x)$ has a derivative equal to $\mathbf{f}'(x_0)\mathbf{g}(x_0) + \mathbf{f}(x_0)\mathbf{g}'(x_0)$ at x_0 . In particular, if $U(x) = (\alpha_{ij}(x))$ and $V(x) = (\beta_{ij}(x))$ are two *square matrices* of order *n*, differentiable at x_0 , their product *UV* has a derivative equal to $U'(x_0)V(x_0) + U(x_0)V'(x_0)$ at x_0 (where $U'(x) = (\alpha'_{ij}(x))$ and $V'(x) = (\beta'_{ij}(x))$).

5) The *determinant* det($\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$) of *n* vectors $\mathbf{x}_i = (\dot{x}_{ij})_{1 \leq j \leq n}$ from the space \mathbb{R}^n (*Alg.*, III, p. 522) being a (continuous) multilinear function of the \mathbf{x}_i , one sees that if the

§1.

DERIVATIVES

Ch. I

 n^2 real functions f_{ij} are differentiable at x_0 , then their determinant $g(x) = det(f_{ij}(x))$ has a derivative equal to

$$\sum_{i=1}^{n} \left[\mathbf{f}_{1}(x_{0}), \dots, \mathbf{f}_{i-1}(x_{0}), \mathbf{f}'_{i}(x_{0}), \mathbf{f}_{i+1}(x_{0}), \dots, \mathbf{f}_{n}(x_{0}) \right]$$

at x_0 , where $\mathbf{f}_i(x) = (f_{ij}(x))_{1 \le j \le n}$; in other words, one obtains the derivative of a determinant of order *n* by taking the sum of the *n* determinants formed by replacing, for each *i*, the terms of the *i*th column by their derivatives.

Remark. If U(x) is a square matrix which is differentiable and invertible at the point x_0 , then the derivative of its determinant $\Delta(x) = \det(U(x))$ can be expressed through the derivative of U(x) by the formula

$$\Delta'(x_0) = \Delta(x_0).\operatorname{Tr}(U'(x_0)U^{-1}(x_0)).$$
(3)

Indeed, let us put $U(x_0+h) = U(x_0)+hV$; then, by definition, V tends to $U'(x_0)$ when h tends to 0. One can write

$$\Delta(x_0 + h) = \Delta(x_0). \det(I + hVU^{-1}(x_0)).$$

Now det $(I + hX) = 1 + h\text{Tr}(X) + \sum_{k=2}^{n} \lambda_k h^k$, the λ_k $(k \ge 2)$ being polynomials in

the elements of the matrix X; since the elements of $VU^{-1}(x_0)$ have a limit when h tends to 0, we indeed obtain the formula (3).

4. DERIVATIVE OF THE INVERSE OF A FUNCTION

PROPOSITION 4. Let E be a complete normed algebra with a unit element over **R** and let **f** be a function defined on an interval $\mathbf{I} \subset \mathbf{R}$, taking values in E, and differentiable at the point $x_0 \in \mathbf{I}$. If $\mathbf{y}_0 = \mathbf{f}(x_0)$ is invertible ² in E, then the function $x \mapsto (\mathbf{f}(x))^{-1}$ is defined on a neighbourhood of x_0 (relative to I), and has a derivative equal to $-(\mathbf{f}(x_0))^{-1}\mathbf{f}'(x_0)(\mathbf{f}(x_0))^{-1}$ at x_0 .

Indeed, the set of invertible elements in E is an open set on which the function $\mathbf{y} \mapsto \mathbf{y}^{-1}$ is continuous (*Gen. Top.*, IX, p. 178); since **f** is continuous (relative to I) at x_0 , $(\mathbf{f}(x))^{-1}$ is defined on a neighbourhood of x_0 , and we have

$$(\mathbf{f}(x))^{-1} - (\mathbf{f}(x_0))^{-1} = (\mathbf{f}(x))^{-1} (\mathbf{f}(x_0) - \mathbf{f}(x)) (\mathbf{f}(x_0))^{-1}$$

The proposition thus follows from the continuity of y^{-1} on a neighbourhood of y_0 and the continuity of xy on $E \times E$.

² Recall from (*Alg.*, I, p. 15) that an element $\mathbf{z} \in \mathbf{E}$ is said to be *invertible* if there exists an element of *E*, denoted by \mathbf{z}^{-1} , such that $\mathbf{z}\mathbf{z}^{-1} = \mathbf{z}^{-1}\mathbf{z} = \mathbf{e}$ (**e** being the unit element of *E*).

FIRST DERIVATIVE

Examples. 1) The most important particular case is that where E is one of the fields **R** or **C** : if f is a function with real or complex values, differentiable at the point x_0 , and such that $f(x_0) \neq 0$, then 1/f has derivative equal to $-f'(x_0)/(f(x_0))^2$ at x_0 .

2) If $U = (\alpha_{ij}(x))$ is a square matrix of order *n*, differentiable at x_0 and invertible at this point, then U^{-1} has derivative equal to $-U^{-1}U'U^{-1}$ at x_0 .

5. DERIVATIVE OF A COMPOSITE FUNCTION

PROPOSITION 5. Let f be a real function defined on an interval $I \subset \mathbf{R}$, and \mathbf{g} a vector function defined on an interval of **R** containing f(I). If f is differentiable at the point x_0 and **g** is differentiable at the point $f(x_0)$ then the composite function $\mathbf{g} \circ f$ has a derivative equal to $\mathbf{g}'(f(x_0))f'(x_0)$ at x_0 .

Let us put $\mathbf{h} = \mathbf{g} \circ f$; for $x \neq x_0$ we can write

$$\frac{\mathbf{h}(x) - \mathbf{h}(x_0)}{x - x_0} = \mathbf{u}(x) \frac{f(x) - f(x_0)}{x - x_0}$$

where we set $\mathbf{u}(x) = \frac{\mathbf{g}(f(x)) - \mathbf{g}(f(x_0))}{f(x) - f(x_0)}$ if $f(x) \neq f(x_0)$, and $\mathbf{u}(x) = \mathbf{g}'(f(x_0))$

otherwise. Now f(x) has limit $f(x_0)$ when x tends to x_0 , so $\mathbf{u}(x)$ has limit $\mathbf{g}'(f(x_0))$, from which the proposition follows in view of the continuity of the function yx on $E \times \mathbf{R}$.

6. DERIVATIVE OF AN INVERSE FUNCTION

PROPOSITION 6. Let f be a homeomorphism of an interval $I \subset \mathbf{R}$ onto an interval $J = f(I) \subset \mathbf{R}$, and let g be the inverse homeomorphism³. If f is differentiable at the point $x_0 \in I$, and if $f'(x_0) \neq 0$, then g has a derivative equal to $1/f'(x_0)$ at $y_0 = f(x_0).$

For each $y \in J$ we have $g(y) \in I$ and u = f(g(y)); we thus can write $\frac{g(y) - g(y_0)}{y - y_0} = \frac{g(y) - x_0}{f(g(y)) - f(x_0)}, \text{ for } y \neq y_0. \text{ When } y \text{ tends to } y_0 \text{ while remaining}$

in J and $\neq y_0$, then g(y) tends to x_0 remaining in I and $\neq x_0$, and the right-hand side in the preceding formula thus has limit $1/f'(x_0)$, since by hypothesis $f'(x_0) \neq 0$.

COROLLARY. If f is differentiable on I and if $f'(x) \neq 0$ on I, then g is differentiable on J and its derivative at each point $y \in J$ is 1/f'(g(y)).

For example, for each integer n > 0, the function $x^{1/n}$ is a homeomorphism of \mathbf{R}_+

onto itself, is the inverse of x^n , and has derivative $\frac{1}{n}x^{\frac{1}{n}-1}$ at each x > 0. One deduces easily, from prop. 5, that for every rational number r = p/q > 0 the function $x^r = (x^{1/q})^p$ has derivative rx^{r-1} at every x > 0.

§1.

³ For f to be a homeomorphism of I onto a subset of **R** we know that it is necessary and sufficient that f be continuous and strictly monotone on I (Gen. Top., IV, p. 338, th. 5).

DERIVATIVES

Remarks. 1) All the preceding propositions, stated for functions differentiable at a point x_0 , immediately yield propositions for functions which are right (resp. left) differentiable at x_0 , when, instead of the functions themselves, one considers their restrictions to the intersection of their intervals of definition with the interval $[x_0, +\infty[$ (resp. $] -\infty, x_0]$); we leave it to the reader to state them.

2) The preceding definitions and propositions (except for those concerning right and left derivatives) extend easily to the case where one replaces **R** by an arbitrary *commutative non-discrete topological field* K, and the topological vector spaces (resp. topological algebras) over **R** by topological vector spaces (resp. topological algebras) over K. In def. 1 and props. 1, 2 and 3 it is enough to replace I by a *neighbourhood* of x_0 in K; in prop. 4 one must assume further that the map $\mathbf{y} \mapsto \mathbf{y}^{-1}$ is defined and continuous on a neighbourhood of $\mathbf{f}(x_0)$ in E. Prop. 5 generalizes in the following manner: let K' be a non-discrete subfield of the topological field K, let E be a topological vector space *over* K; let f be a function defined on a neighbourhood $V \subset K'$ of $x_0 \in K'$, with values in K (considered as a topological vector space over K'), differentiable at x_0 , and let **g** be a function defined on a neighbourhood of $f(x_0) \in K$, with values in E, and differentiable at the point $f(x_0)$; then the map $\mathbf{g} \circ f$ is differentiable at x_0 and has derivative $\mathbf{g}'(f(x_0))f'(x_0)$ there (E being then considered as a topological vector space *over* K').

With the same notation, let **f** be a function defined on a neighbourhood V of $a \in K$, with values in E, and differentiable at the point a; if $a \in K'$, then the *restriction* of **f** to $V \cap K'$ is differentiable at a, and has derivative $\mathbf{f}'(a)$ there. These considerations apply above all, in practice, to the case where K = C and $K' = \mathbf{R}$.

Finally, prop. 6 extends to the case where one replaces I by a neighbourhood of $x_0 \in K$, and f by a homeomorphism of I onto a neighbourhood J = f(I) of $y_0 = f(x_0)$ in K.

7. DERIVATIVES OF REAL-VALUED FUNCTIONS

The preceding definitions and propositions may be augmented in several respects when we deal with *real-valued* functions of a real variable.

In the first place, if f is such a function, defined on an interval $\mathbf{I} \subset \mathbf{R}$, and continuous relative to I at a point $x_0 \in \mathbf{I}$, it can happen that when x tends to x_0 while remaining in I and $\neq x_0$, that $\frac{f(x) - f(x_0)}{x - x_0}$ has a limit equal to $+\infty$ or to $-\infty$; one then says that f is differentiable at x_0 and has derivative $+\infty$ (resp. $-\infty$) there; if the function f has a derivative f'(x) (finite or infinite) at every point x of I, then the function f' (with values in $\overline{\mathbf{R}}$) is again called the derived function (or simply the derivative) of f. One generalizes the definitions of right and left derivative similarly.

Example. At the point x = 0 the function $x^{1/3}$ (the inverse function of x^3 , a homeomorphism of **R** onto itself) has a derivative, equal to $+\infty$; at x = 0 the function $|x|^{1/3}$ has right derivative $+\infty$ and left derivative $-\infty$.

The formulae for the derivative of a sum, of a product of differentiable real functions, and for the inverse of a differentiable function (props. 1, 3 and 4), as well as for the derivative of a (real-valued) composition of functions (prop. 5) remain valid when the derivatives that occur are infinite, so long as all the expressions that occur in these formulae make sense (*Gen. Top.*, IV, p. 345–346). In fact, if in prop. 6 one supposes that f is strictly increasing (resp. strictly decreasing) and continuous on I, and if $f'(x_0) = 0$, then the inverse function g has a derivative equal to $+\infty$

- read online Archaeology in Latin America pdf, azw (kindle)
- <u>read online We Too Sing America: South Asian, Arab, Muslim, and Sikh Immigrants Shape</u> <u>Our Multiracial Future</u>
- download online A Beautiful Question: Finding Nature's Deep Design
- read Archaeology in British Towns: From the Emperor Claudius to the Black Death
- Best Lesbian Romance 2013 pdf, azw (kindle)
- http://www.1973vision.com/?library/Chekhov.pdf
- <u>http://www.celebritychat.in/?ebooks/We-Too-Sing-America--South-Asian--Arab--Muslim--and-Sikh-Immigrants-Shape-Our-Multiracial-Future.pdf</u>
- <u>http://bestarthritiscare.com/library/Too-Cool-for-This-School.pdf</u>
- <u>http://rodrigocaporal.com/library/Archaeology-in-British-Towns--From-the-Emperor-Claudius-to-the-Black-Death.pdf</u>
- http://www.netc-bd.com/ebooks/The-Green-Pearl--Lyonesse--Book-2-.pdf