Environmental and Economic Sustainability

1-15-DE

Environmental and Economic Sustainability

Environmental and Ecological Risk Assessment

Series Editor Michael C. Newman

College of William and Mary Virginia Institute of Marine Science Gloucester Point, Virginia

Published Titles

Coastal and Estuarine Risk Assessment Edited by Michael C. Newman, Morris H. Roberts, Jr., and Robert C. Hale

Risk Assessment with Time to Event Models

Edited by Mark Crane, Michael C. Newman, Peter F. Chapman, and John Fenlon

> Species Sensitivity Distributions in Ecotoxicology Edited by

Leo Posthuma, Glenn W. Suter II, and Theo P. Traas

Regional Scale Ecological Risk Assessment: Using the Relative Risk Method Edited by Wayne G. Landis

Economics and Ecological Risk Assessment: Applications to Watershed Management Edited by Randall J.F. Bruins

Environmental Assessment of Estuarine Ecosystems: A Case Study Edited by Claude Amiard-Triquet and Philip S. Rainbow

Environmental and Economic Sustainability Edited by Paul E. Hardisty

Environmental and Economic Sustainability

Paul E. Hardisty

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-5948-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Hardisty, Paul E.
Environmental and economic sustainability / Paul E. Hardisty.
p. cm. -- (Environmental and ecological risk assessment)
Includes bibliographical references and index.
ISBN 978-1-4200-5948-9
1. Sustainable development. 2. Environmental protection. I. Title.

HC79.E5H3537 2010 338.9'27--dc22

2009052896

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Dedication

To the mentors in my life: Dad, Fred, Tad, and Peter. Thanks for your wisdom, guidance, criticism, and support.

Foreword	xvii
Preface	xix
About the A	uthorxxi
Chapter 1	Introduction
	The Exponential Era1
	Crisis—Which Crisis?
	All Feeding Off Each Other
	Cheap Energy, Climate Change, and Poverty
	A Crisis of Sustainability
	Do We Want A Sustainable World?
	Industry Can and Must Be Part of the Answer
	True Sustainability for This Century
	Sustainability: Different Perspectives, Different Meanings
	Words, Thoughts, and Action
	What Do I Give Up? What Do I Get?
	Comparing Apples, Refrigerators, and Giraffes
	In the End, Money Rules
	The Dilemma for Industry
	Sustainable Decisions for the Twenty-First Century 10
	Making Sustainability Relevant to Business and Industry
	Environmental and Social Economics for Industry
	The Response of Business
	Objectives and Structure of the Book
	Notes
Chapter 2	Sustainability in the Twenty-First Century
	A Short History of Sustainability17
	A 40-Year Journey 17
	Silent Spring 17
	Regulations with Power 17
	Earth Day18
	Industry Awakens 18
	The Emergence of an Idea19
	Environmental Economics
	Bhopal20
	Exxon Valdez
	The Fight to Save the Ozone
	Sustainable Development Is Born
	Strong versus Weak Sustainability

vii

The Triple Bottom Line	22
The Nobel Peace Prize	23
From Concept to Core Principle	23
The Challenges of the Twenty-First Century	24
An Overview of Global Trends	24
Our Changing Relationship with the Planet	25
More People, Less to Go Around	25
Providing a Decent Standard of Living for 10 Billion People	26
The Fossil Fuel Industry: An Example	26
The Metrics of Sustainability	27
Food and Poverty	28
The Hidden Costs of Food	28
Feeding a Growing Population	28
Poverty: Progress and Setbacks	29
Water	30
An Unevenly Distributed Renewable Resource	30
Moving Water	31
Increasing Water Stress	
Water Is Life	
Water Pollution	33
Water and Industry in the Middle East	34
Global Trends	35
Biodiversity	36
Ecosystem Services	36
The Living Planet Is Ill	37
Using More of Everything than the Earth Produces	38
The Plight of the Oceans	30
No Pain No Change	40
Climate Change	40 41
The Effects of Climate Change	+1 42
Public Opinion versus Science	1 2
A New Sense of Urgency	<u>-</u> 2
A Climata Change Disk Assessment	4J 13
A n Ungustainable Course	
Despite Local Successes Accelerating in the Wrong	
Direction	45
Time to Change Direction	+J 16
Why Sustainability Has Not Worked	40
Overview	40
A Time of Dianty	40
A TIME OF FIGHTY	4/ 47
The Industrial Revolution Changes the Rules	4/ 47
The Energy Climate Drahlars	4/
The Energy-Climate Problem	48
Iangible Impact of Sustainability	49
Eighteenth-Century Economics	49
Economics for a Different Time	49

The Tragedy of the Commons	
Without Price Signals Nothing Will Change	50
Twentieth-Century Engineering	50
Twenty-First Century Economics	51
Better Decision Making Will Make Us More Sustainable	51
It Is Not Only about Cost	51
It Is Also about Benefits	52
We Can Do This Now	52
Conclusion	53
Notes	54

Chapter 3	Quantifying Sustainability for Improved Decision Making	59
	Balancing Environment, Society, and Economy	59
	Introduction	59
	The Problem with GDP	59
	Promoting Unsustainable Behavior	60
	A More Sustainable Alternative: Net National Welfare	61
	From Macro to Micro	61
	How Industry Makes Decisions	62
	Economic Quantification of Sustainability	62
	An Economic Definition of Sustainability	63
	A Double-Edged Sword	64
	The Externalities Can Be Worth a Lot	64
	An Illustration: The NPV-Internal Rate of Return Trap	64
	Example: Heat Recovery in the Petroleum Industry	65
	The Environmental and Economic Sustainability Assessment:	
	Embedding Sustainability in Decision Making	66
	Approach Overview	66
	Framing Workshop	67
	Determine the Objective and the Level of Assessment	68
	Identify Options for Achieving the Objective	70
	Identify Assets to Be Included in the Assessment	71
	Identify Risks and Constraints	73
	Agree on Planning Horizon for the Assessment	73
	Set the Life-Cycle Boundaries of the Assessment	74
	Identify Range of Discount Rates to Use	75
	Framing Session Output	76
	Physical Quantification of Options	76
	Socioenvironmental Economic Analysis	76
	Full Social Cost-Benefit Analysis	76
	Net Benefits	78
	Valuation of Benefits	80
	Private Benefits	80
	External Benefits	80

	Internal Costs	81
	External Costs	
	Valuing the Environment and Society	
	Overview	
	Valuation Techniques	
	Actual Market Techniques	
	Surrogate Market Techniques	
	Hypothetical Market Techniques	
	Greenhouse Gas Emissions	
	The Carbon Markets	
	The Social Cost of Carbon	
	Air Pollution	
	Water	
	The Total Economic Value of Water	90
	Water Value Estimates	
	Biodiversity	
	Overview	
	Social Externalities	94
	Using Valuation Data	94
	Applying the Environmental and Economic Sustainability	
	Assessment	97
	Application of Social Cost–Benefit Analysis in Decision	
	Making	97
	Apportionment of Costs and Benefits	97
	Externalities Change Perception of Optimality	98
	Private Sector Organizations and External Costs	100
	An Environmental, Social, and Economic Optimum	101
	Full Environmental, Social, and Economic Life-Cycle	
	Modeling	102
	Calculation Software	102
	Optimizing Decision Making	103
	Sensitivity Analysis	103
	Gauging the Implications	104
	Communicating Decisions	107
	Examples	107
	Notes	108
Chapter 4	Water	113
•	Introduction	113
	Water Management in Industry: Overview	114
	Water Use and Protection in Oilfield Development in North	117
	Africa	115
	Background	115
	Water Resources in North Δ frica	110
	An Ancient Groundwater Resource	110

Water Use and Availability in Libya	. 120
Water Use in the Petroleum Sector and Regulatory Context	121
Environmental and Economic Sustainability Assessment	
Objective and Options	. 122
Option Development and Costing	. 122
Option 1: Base Case—Unrestricted Freshwater Use	. 123
Option 2: Lower Groundwater Use Option	. 124
Option 3: No Groundwater Use Option	. 124
Option 4: No Freshwater Use with PFW Reinjected into	
the Producing Formation	. 125
Option 5: Alternative Source of Injection Water	. 125
Option 6: Community-Based Bottled Water Operation	. 125
Option 7: Solar Desalination Mitigation Replacement	. 126
Benefits Assessment	. 127
Approach	. 127
Benefits Valuation	. 127
Costs and Benefits: Base Case	. 129
Sensitivity Analysis	. 131
Case of High Water Value	. 131
Case of High Oil Value and High Water Value	. 133
Variation of Discount Rate	. 133
Implications	. 134
Produced Water Management in Oilfield Operations	. 135
Background: Produced Water	. 135
Example: Produced Water Disposal and Groundwater	
Protection	. 135
Example: Produced Formation Water Reuse Assessment	. 137
Background	. 137
Options Development and Costing	. 137
Benefits Identification and Valuation	. 138
Base Case Economic Sustainability Analysis	. 142
Sensitivity Analysis	. 144
Implications	. 144
Limitations	. 144
The Value of More Data	. 145
Water Management in Mine Development	. 145
Background	. 145
Options Description	. 146
Option Costs	. 148
Benefits Assessment and Valuation	. 150
Greenhouse Gas Emissions	. 151
Total Economic Value of Water	. 151
Proliferation of Weeds	. 152
Indigenous and Heritage Value	. 153
Ecological Footprint	. 154
Loss of Creek Valley Biodiversity	. 154

	Ecosystem Support Value of Streams	155
	Community Amenity Value of Streams	155
	Benefits Summary	
	Proportion of Benefits Realized by Each Option	
	Economic Sustainability Assessment Results	157
	Scope and Basis of the Assessment	
	Base Case Analysis	
	Base Case without Heritage	157
	Solar Thermal Power Plant Option	
	Sensitivity Analysis	
	Sensitivity to the TEV of Water	163
	Sensitivity to Energy Price Escalation	164
	Conclusions and Implications	
	Limitations	166
	Example: Determining a Sustainable Wastewater Treatment	
	and Discharge Strategy	167
	Overview: Treatment and Discharge of Wastewater	
	Basis of Analysis	167 168
	Treatment and Discharge Ontions	168
	Renefits	160
	Proportion of Benefits Realized by Each Option	107 171
	Apportion of Denents Realized by Each Option	171 171
	Apportionment Due to Treatment Quanty	1/1 172
	Apportioninent Due to Location	172 172
	Aggegement Degulter Dege Coge	172
	Assessment Results: Dase Case	
	Conclusions	1/0
	Conclusions	1/ð 170
	Summary	1/8
	Notes	1/8
Chapter 5	Greenhouse Gases and Climate Change	181
	Introduction	101
	Carbon Mitigation Pick	101 197
	Pricing Carbon in Business Decisions	
	Example: GHG Management in the Gas Industry	105 186
	A deptation Disks	100 197
		107 107
	Evenue Evenue	107 107
	A Caution to Designers Engineers and Managers	
	A Caution to Designers, Engineers, and Managers	
	Example: GHG Management in Heavy Oil Production	
	Dackground	
	Options	
	Cost Estimate Basis and Assumptions	191
	Benefits Assessment and Valuation	
	Benefits Summary	193

	Proportion of Benefits Realized by Each Protection	
	Measure	194
	Economic Sustainability Assessment Results	194
	Scope and Basis of the Analysis	194
	Base Case	194
	Sensitivity Analysis	197
	Sensitivity to Energy Price Escalation	197
	Sensitivity to CO ₂ Value	199
	Sensitivity to NOx and SOx Emissions	200
	Sensitivity to Water TEV	200
	Sensitivity to Discount Rate	200
	Option Selection	201
	Implications	202
	Summary	203
	Notes	203
Chaptor 6	Energy	205
Chapter 0	Ellergy	
	Introduction	205
	Creating a Sustainable Future	205
	Sustainability and Energy	205
	An Energy Mix for the Future	206
	Example: The External Costs of Power Production	207
	Example: Commercial-Scale Solar Thermal Power in Australia	a 210
	Introduction	210
	CSP Technology Overview	211
	Facility Description and Costing	211
	Financial Analysis	213
	Environmental and Economic Sustainability Assessment	215
	Energy Security	217
	Carbon Cost Reduction	217
	Carbon Emission Reductions	217
	Early Mover Advantages	218
	Public Relations and Corporate Responsibility Benefits	218
	Example: Comparing Renewable Energy Options	218
	Introduction	218
	Options Description and Costing	218
	Benefits Assessment	219
	Valuing Salinity Amelioration Benefits	221
	Cost–Benefit Analysis	221
	Base Case Results	222
	Sensitivity Analysis	224
	Sensitivity to GHG Value	
	Sensitivity to Salinity Amelioration Benefits	
	Sensitivity to Revenue from Activated Carbon	
	Sensitivity to Energy Price	226
	, to, to	

	Sensitivity to Social Discount Rate	
	Cumulative Probability	
	Decision-Making Implications	
	Summary	
	Notes	
Chapter 7	Contaminated Sites and Waste	
	Introduction	231
	Conceptual Framework	
	Space and Time	
	Remedial Objective	
	Remedial Strategy	234
	Remedial Technology	
	The Economics of Remediation	
	Financial Costs of Remediation	
	External Costs of Remediation	
	Benefits of Remediation	
	Private Benefits	
	External Benefits	
	Remediation of Brownfield Sites: Unlocking Private	
	Benefit	
	Blight Reduction: External Benefit	
	Economic Sustainability Analysis for Contaminated Land	
	Overview	
	Application	244
	The Social Cost of Waste Management Using Landfill	244
	Overview	
	An Overview of Waste Trends	
	Social Costs	
	Social Costs and Landfill Taxes	
	Summary	
	Case History: Brownfield Redevelopment in Canada	
	Background and Setting	248
	Site Description and Contaminant Distribution	249
	Remedial Approach	249
	Cost–Benefit Analysis	250
	Implementation and Outcomes	250
	A Wider Perspective	251
	Case History: Groundwater Remediation at a Refinery in	
	Furone	252
	Overview	252
	Site Conditions	
	Bick Assessment	232 252
	Constraints to Demediation	
	L evel of A polysic	
	LEVEL OF AHAIYSIS	

Pamadial Costs	257
N1: Monitored Natural Attenuation	257
S1: Deadily Mobile NADI Demovel Dive MNA	257
S1. Reduity Mobile INAPL Removal Flux MINA	257
S2. Full NAPL Removal and Site Demodiation as Dart of	237
S5: Full NAPL Removal and Sile Remediation as Part of	257
Site Decommissioning Plus MINA	257
PI: Hydraulic Containment at Chemical Manufacture	250
Area Boundary	258
R1: Divert Groundwater Pumping to Other Abstraction	250
Wells	258
R2: Treat BHA Groundwater Abstraction	258
R3: Replace Extracted Groundwater with Main Water	258
External Costs	258
Benefits	258
Property Value	259
Water Abstracted from BHA	260
Benefits to Neighbors	260
Aquifer Value	261
Estuary	261
Benefit Apportionment	262
Base Case Assessment Results	262
Sensitivity Analysis	262
Discussion	264
Implications	266
Remediating NAPLs in Fractured Aquifers	266
Introduction	266
Technical Considerations	
Example: DNAPL in a Fractured Carbonate Aquifer, United	
States	
Background	
Benefits of Remediation	269
Remedial Approach Options	270
Simple High-Level Environmental and Economic	
Sustainability Analysis	270
Implications	270
Example: NAPL in a Fractured Carbonate Aquifer, United	
Kingdom	271
Background	271
Remedial Objective	272
Benefits of Remediation	273
Remedial Approach Options	274
Indicative Remedial Costs	274
Base Case Analysis	276
Sensitivity Analysis and Decision Making	279
Discussion	282
Notes	283

Chapter 8	Best Practice for the Twenty-First Century	
	Summary	
	Technology	
	Management and Decision Making	
	The Necessary Evolution of the Environmental Impact	
	Assessment	
	Regulatory Capacity Development	
	Revealing the Real Cost of Corruption	
	Into the Future	291
	Now Is the Right Time	291
	From Remediation to Prevention	
	Future Value Trends	
	Toward a New Metric of Success	
	Industry Can Lead the Way and Benefit in the Process	
	Summary	
	Notes	
Index		

xvi

Foreword

Until relatively recently, serious discussion of environmental issues at board level was the preserve of an enlightened few companies. For most, protection of the environment was considered to be only a legal compliance issue. However, recognition of the magnitude and severity of human impact on the global climate, coupled with society's demand for greater corporate social responsibility, has changed all that. Whilst climate change has dominated the environmental agenda in recent years, there is a growing awareness that preservation of the wider environment, dwindling resources and social well-being demand an integrated approach if future generations are to prosper.

Whilst this is a great philosophical conclusion to reach, we live in a world where the common global language is money. Hardisty's book shows us how to use the language of money to make decisions that are right for the environment, society, and, critically, the commercial world that we rely upon to increase our quality of life. This does not mean that we are being encouraged to somehow "sell out" the environment, but rather that by measuring and internalizing the value of the environment and resources to society, we will make decisions that are more sustainable for all.

Dr. Steve Wallace

Head of Climate Change and Environment National Grid

xvii

Preface

At the United Nations Copenhagen Climate Conference in December 2009, I had the opportunity to meet with a senior scientist from the U.S. National Oceanographic and Atmospheric Administration (NOAA) in the U.S. pavilion. He was playing with a remote control device that was directing the data feed to four high-definition projectors aimed at a massive translucent sphere hanging from the ceiling. The sphere, of course, was Earth. He brought up satellite and radar imaging data on Arctic sea ice for every day going back several years and then let it run. We watched the sea ice go through its yearly cycle of winter expansion and summer contraction. He stopped the run at mid-September 2009 and described what we could see: an ice pack that was at its third smallest areal extent ever (2007 was the lowest; it dropped 35% below the long-term average in one year, with a slight recovery in 2008). Then, he explained the significance of the vast gray areas clearly visible against the white ice. "These are areas of thinning ice," he said. He went on to explain that the overall volume of Arctic ice is now less than one-third of what it was in the 1970s, and that 2009 was the lowest ever on record (so far).

The data are coming in quickly now. The World Meteorological Organization reported that the decade ending in 2009 was the warmest ever on record, and that each successive decade has been warmer than the last. The year 2009 was the fifth warmest on record. Twelve of the warmest years on record have occurred in the last 12 years. The natural climate has always been variable, but now the human-induced overprinting is becoming more and more dominant. And yet, our emissions continue to accelerate.

Climate change is not the only issue facing us in the twenty-first century. Water scarcity, the urgent need to produce more food for the billions we will add to the world's population over the next 40 years, the increasing disparity between rich and poor, the unraveling of many of the world's ecosystems, species loss, and the plight of the oceans are all equally deserving of our attention. We need to find and implement solutions to all of these (and other) challenges, and do it quickly, or face a perilous future.

Many of the fixes, particularly to global issues like climate change, may at first appear to be global in scale, solved only by international treaties and national policy. But, the combined effect of the millions of smaller-scale project and policy decisions made every day by businesses, industry, and organizations of all kinds is what makes global trends. At this smaller scale, a move toward more environmentally, socially, and economically sustainable choices, options, and policies can have a powerful effect.

This book, the result of over 15 years of research and practice, introduces the environmental and economic sustainability assessment (EESA), a process that helps decision makers at all levels balance the needs of society, the environment, and business over the long term by quantifying sustainability in a way that is physically based and objective. Ultimately, this book is about communication: including stakeholders

xix

in a transparent process that provides a robust view of how various options compare over a wide range of possible future conditions using a language that everyone understands—money.

In Copenhagen, the real climate change debate was mostly about money: who is going to pay and how much, how developing countries can access financing. Although everyone understands that we must act, they also realize that nothing can be done without funding—simply because money is how we measure *value* (whether we like it or not). Ultimately, the solutions to the problems of the twenty-first century will come from understanding and acknowledging the tremendous value that the environment provides, and reflecting that value within decision making at every level so that *society as a whole* is better off from each choice we make. Perhaps it will be the sum of all of those beneficial decisions, taken every day, at every level, that will help to change the world.

Paul E. Hardisty

About the Author

Paul E. Hardisty is executive director, Sustainability and EcoNomics[™] for WorleyParsons, one of the world's largest engineering companies. For over twenty years, he has been advising industry and governments around the world on environmental strategy and sustainability. He is a visiting professor in environmental engineering at Imperial College, London, and adjunct professor at the University of Western Australia School of Business, where he teaches sustainability and climate change to MBA students. Paul is the author of numerous technical papers, books, and newspaper articles on environmental issues and a soon-to-be-released novel, which he describes as an eco-thriller. He is a contributor to President Gorbachev's Climate Change

Task Force, a member of the Waste Management Authority of Western Australia, and a director of Green Cross Australia. Paul lives in Western Australia with his wife, Heidi, and two sons, Zachary and Declan, and for fun competes in Ironman triathlons.

xxi

1 Introduction

THE EXPONENTIAL ERA

In the twenty-first century, the world is a place of unrelenting and ever-accelerating change. Financial turmoil sends the global economy from the heights of boom to unprecedented depression in a few short months; the price of oil skyrockets to over five times its previous long-term average and then tumbles down again in a matter of weeks (Figure 1.1); after taking a hundred thousand years to reach just over 6 billion, the world's population will grow by almost 4 billion in the next 40 years¹ (Figure 1.2); the extent of arctic sea ice, in steady decline since the middle of the last century, falls off alarmingly in 2007 and 2008;² emissions of greenhouse gases (GHGs) to the atmosphere are rising faster than ever before.³

We live in the exponential era-a time unique in history, when a confluence of overlapping and mutually reinforcing factors is propelling the world into unknown economic, social, and environmental territory at an accelerating rate.⁴ Not only are there ever more people on the planet,⁵ but quickening development, particularly in India and China, means that each of these people is demanding more of the world's resources. Technology spurs development, and our exploding technological prowess allows us to wield greater power over our environment and surroundings than ever before. A single man with a D8 caterpillar can now clear as much land in a day as his grandfather could have in a decade of hard manual labor. Our ability to assimilate, use, and process data and information is exploding, just as predicted by Gordon Moore, the founder of Intel. In the 1960s, he predicted that the number of transistors on a silicon chip would double every 18 months-and it has, inexorably, since then.⁶ But, a rapidly rising global population, combined with accelerating development and resource use, surging energy demand, and an ever-expanding need for water and food, is also creating huge stress on the natural environment. This combination of forces, which some are now calling simply global change, is leading to chronic overfishing, large-scale clearing of native forest, an alarming and accelerating loss of global biodiversity, and increasingly stronger evidence of the impacts of climate change.7 Many are now calling this a time of unprecedented global environmental crisis.8

CRISIS—WHICH CRISIS?

But other issues, equally worthy of the dubious distinction "crisis," abound. Poverty remains a blight on humanity. Today, according to the most recent statistics from the United Nations, approximately 45% of the world's population lives on less than US\$1 per day.⁹ In the United States or Europe, that much would not buy one decent meal. An astonishing 65% of the world lives on less than US\$2 per day. And, the

1

FIGURE 1.1 Actual oil price in U.S. dollars per barrel, 1975–2009, with 2% and 5% increase trend lines from 1988.

numbers of chronically poor are increasing despite the efforts of well-intentioned organizations and individuals around the world. But, the disparity in income is not the only measure of poverty. Never before in modern history has wealth been more concentrated in fewer hands: The richest 1% of the people on the planet control about half of the wealth. The poorest half of the population, over 3 billion people, owns less than 1% of the planet's wealth. This shocking inequality is also growing, accelerating in the wrong direction (20 years ago the top 1% controlled about a quarter of the wealth). Poverty can also be measured in other ways. Over 1 billion people on the planet lack access to safe, clean drinking water, and that number is rising. Lacking this most fundamental of goods, these people are *water poor*, and it affects every

FIGURE 1.2 World population growth 1750–2050 based on data from U.N. Population Project and Cohen (1995).

part of their lives. These are all examples of increasingly unsustainable trends—they cannot continue indefinitely, as history has shown, without causing major ruptures in society.

ALL FEEDING OFF EACH OTHER

Many, if not most, of these crises are actually interlinked, interdependent, and mutually reinforcing. Figure 1.3 provides a basic schematic overview of the causative and consequential links between people and the world we inhabit. The interdependence is startling. An economic paradigm that focuses on gross domestic product (GDP) and does not explicitly account for the value of external issues (environment, society, depletion of natural capital) accelerates the use of natural resources of all kinds and concentrates wealth; concentration of economic wealth and income disparity create poverty; poverty causes environmental degradation as people are forced to destroy natural capital just to survive; environmental degradation further reinforces the poverty cycle as the land is degraded; and pollution leads to health impacts, further loss of income-generating potential, damage to the means of livelihood, and eventually social strife. Civil unrest among the disaffected and displaced leads to the rise of extremism and terrorism. And as the population grows, and each of these issues develops more rapidly, the need for solutions becomes even more urgent.¹⁰

CHEAP ENERGY, CLIMATE CHANGE, AND POVERTY

The widespread availability of "cheap" fossil energy has driven global economic growth, creating prosperity for many (but not most), but as a consequence has laden the atmosphere with billion of tonnes of GHGs, which are accelerating the natural

FIGURE 1.4 Atmospheric concentrations of CO_2 over the last 10,000 years (based on data from the Intergovernmental Panel on Climate Change, Fourth Assessment Report: The Physical Science Basics, 2007, Cambridge University Press, Cambridge, UK).

changes in the Earth's climate (Figure 1.4). Climate change is, among other things, essentially a story of the redistribution of water, increasingly through extreme weather events.¹¹ That means, in very general terms, more flooding in areas that are already wet and more drought in areas that are already arid.¹² Flood or droughtboth lead to hardship, loss of economic activity, declining agricultural production, and damage to property. Climate change is predicted to have a disproportionate effect on the poorest people of the world and so will only reinforce poverty and the wealth and income disparities between haves and have-nots.¹³ Even our efforts to protect ourselves against climate change, if executed using current business-as-usual decision making and technology, will act to reinforce climate change. In Australia, for instance, chronic drought due to changing rainfall patterns triggered by climate change¹⁴ has led to the building of new desalination plants, with more planned. If powered by electricity from a predominantly coal-fired grid, these plants will add more GHGs to the atmosphere, exacerbating climate change. These anthropogenic feedback loops will simply reinforce the problem in a descending spiral. The harsher the impacts of climate change, the more energy we will need to protect ourselves and adapt, the worse climate change will get. One of the most pressing questions facing people and governments around the world today is: Which of these simultaneous crises do we deal with, and how?

A CRISIS OF SUSTAINABILITY

These, and other issues such as the threat of terrorism, nuclear proliferation, AIDS, pandemics, and basic food security, are all essentially *crises of sustainability*— they cannot go on indefinitely. Societies, ecosystems, countries, sectors, industries, people—all are locked together on the same planet, subject to the same laws of physics and biology. One way or another, unsustainable behavior will eventually lead to

sample content of Environmental and Economic Sustainability (Environmental and Ecological Risk Assessment)

- The Knowledge: How to Rebuild Our World from Scratch pdf, azw (kindle), epub, doc, mobi
- read The Arabian Nights (Barnes & Noble Classics)
- Neutral Milk Hotel's In the Aeroplane Over the Sea (33 1/3 Series) pdf
- read online Dom's Guide To Submissive Training, Volume 1
- <u>http://weddingcellist.com/lib/Weather-for-Dummies.pdf</u>
- http://xn--d1aboelcb1f.xn--p1ai/lib/The-Arabian-Nights--Barnes---Noble-Classics-.pdf
- http://paulczajak.com/?library/Games-of-State--Tom-Clancy-s-Op-Center--Book-3-.pdf
- <u>http://pittiger.com/lib/Lonely-Planet-Scotland-s-Highlands---Islands--3rd-Edition-.pdf</u>